
  

  

Abstract—Neural signals collected from motor cortex were 
quantified for identification of subject’s specific movement 
intentions in a Brain Machine Interface (BMI). Neuron selection 
serves as an important procedure in this decoding process. In 
this study, we proposed a neuron selection method for 
identifying movement transitions in standing and squatting tasks 
by analyzing cortical neuron spike train patterns. A 
nonparametric analysis of variation, Kruskal-Wallis test, was 
introduced to evaluate whether the average discharging rate of 
each neuron changed significantly among different motion stages, 
and thereby categorize the neurons according to their active 
periods. Selection was performed based on neuron categorizing 
information. Finally, the average firing rates of selected neurons 
were assembled as feature vectors and a classifier based on 
support vector machines (SVM) was employed to discriminate 
different movement stages and identify transitions. The results 
indicate that our neuron selection method is accurate and 
efficient for finding neurons correlated with movement 
transitions in standing and squatting tasks. 

I. INTRODUCTION 

Researchers have been seeking methods to restore normal 
motor function for people who have lost their limbs due to 
amputation or who suffer from paralysis caused by neural 
impairments. The Brain Machine Interface (BMI) has been 
proposed as a plausible way to fulfill this objective [1]. Motor 
cortical neurons’ activities characterized by spike trains and 
local field potentials acquired from electrodes inserted in 
cerebral cortex have been applied in BMI construction [2]. 
Starting from one-dimensional motion decoding in rats [3] 
and continuing with the development of signal acquisition and 
computing technology, increasingly sophisticated information 
about motor control has been obtained through neural signal 
recording and analysis. For instance, neural signals 
corresponding to monkey or human’s reach and grasp 
movements have been used to control robotic hands or 
artificial arms [1, 4].  

Spinal cord injury and other neural impairments may lead 
to dysfunction in lower limb motor control. The significance 
of developing an effective means to help those people regain 
standing and walking ability is obvious. However, in contrast 
to research investigating upper limb motor control, few 
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studies have performed neural recordings related to lower 
limb movement [5]. One possible reason for this is that the 
areas corresponding to lower limb motor control in motor 
cortex are much smaller and deeper and hence more difficult 
to reach. Our previous studies have proposed a novel method 
for investigating cortical control of standing and squatting in 
conscious behavior monkeys [6], and preliminary results show 
a potential to develop cortically controlled direct lower limb 
prostheses based on BMIs. 

Neural signals collected from motor cortex are quantified 
to detect specific movement intentions of subjects in a Brain 
Machine Interface (BMI). Neuron selection serves as an 
important procedure in this decoding process. Large numbers 
of neurons are recorded in an experiment, but only a certain 
percentage shows correlation with certain meaningful 
behavioral events. Neuron selection improves decoding 
performance by incorporating highly task-related neurons and 
avoiding insignificant neurons. Meanwhile, decreased 
required neuron number means less electrodes for recording 
and computational complexity for decoding algorithms [7, 8]. 

In this paper, we propose a neuron selection method for 
identifying movement transitions in standing and squatting 
tasks based on the analysis of spike train data acquired in [6]. 
A nonparametric analysis of variance, Kruskal-Wallis test [9], 
was used to evaluate whether the average discharging rate of 
each neuron changed significantly among different movement 
stages, thereby categorize neurons according to their active 
periods. Selection was performed with neuron categorizing 

information. Finally, the average firing rates of selected 
neurons were assembled as feature vectors and a classifier 
based on support vector machines (SVM) was employed to 
discriminate different movement stages and identify 
transitions. The results indicate that our neuron selection 
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Figure 1. Illustration of behavior task procedure. (A) Visual cue 
sequence. A green box at the bottom represented center light. A red ball 
represented the marker attached on the ankle of the monkey. A green 
ball was shown as target object. (B) Behavior of the monkey in different 
motion stages. (C) Events and time intervals in a typical successful 
trial. 
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method was accurate and efficient for identifying neurons 
correlated with movement transitions in standing and 
squatting tasks. 

II. METHODOLOGY 

A.  Experimental Description 
Two monkeys (Macaca mulatta, names: Hippie and Vivo) 

were trained to complete a series of visually guided stand and 
squat tasks on a special designed primate chair with a movable 
pedal in an experiment performed at Arizona State University 
(ASU). Visual cues were displayed as appearance and shifts of 
colored figures on a screen. A marker attached to the right 
ankle of the monkey was represented as a red ball onscreen.  

Fig. 1 shows the procedure of the behavior task in a typical 
successful trial. A trial started with Center On, corresponding 
to the appearance of a green box on the bottom of the screen. 
To proceed, the monkey must squat properly and make the red 
ball touch the green box (Center Hit). A short time after 
Center Hit, a green ball emerged at the top of the screen 
(Target On) and the monkey was required to stand up and 
push down the pedal of the chair to move the red ball toward 
the target until their positions were matched (Target Hit). The 
onset of the lower limb motion during this phase was defined 
as Center Release. The monkey was trained to remaining 
standing for 400ms. Then, it was guided to retract both legs 
back (Target Release) and make the red ball move towards the 
center box. When the red ball touched the center box again 
(Center Hit 2), a trial was completed and the monkey was 
rewarded. Four typical movement stages could be extracted 
from a successful trial: (1) Target on to Center Release (TR), 
an interval during which the monkey squatted still; (2) Center 
Release to Target Hit (CH), during which the monkey moved 
its lower limbs downward; (3) Target Hit to Target Release 
(HR), during which the monkey stood still. (4) Target Release 
to Center Hit 2 (TH2), during which the monkey moved its 
lower limbs upward. Abbreviations for these movement stages 
are listed in Table I. 

TABLE I.  ABBREVIATIONS FOR 4 MOVEMENT STAGES 

Abbreviations Time interval Monkeys’ state 

TR Target On to Center Release Squat still 

CH Center Release to Target Hit Move downward 

HR Target Hit to Target Release Stand still 

TH2 Target Release to Center Hit 2 Move upward 

Five independent microdrivable electrodes (Thomas 
Recording) were inserted into the target areas corresponding 
to lower limb motor control in each monkey’ s motor cortex. 
Cortical neural activities were recorded and pre-processed by 
a 64-channel neuron recording system (Plexon Inc., Dallas). 
After every 20-24 successful behavior trials (recorded as a set), 
the recording depth of each electrode was adjusted in order to 
approach neurons in different layers. The experiment 
paradigm and surgical procedures were approved by the 
Institutional Animal Care and Use Committee at ASU. 

Detailed description of the experimental apparatus, animal 
training, electrodes and data collection can be found in [6].  

B. Neural signals processing and analysis 
Neural potential waveforms from each electrode channel 

were processed using Offline Sorter (Plexon Inc., Dallas) to 
isolate a single neuron unit. For each recorded set, about 3~10 
units were extracted. Each unit’s average firing rate within TR, 
CH, HR, and TH2 was calculated separately. For each sorted 
unit, we investigated whether individual discharging patterns 
changed significantly during these intervals. 

ANOVA (Analysis of Variance) was implemented as an 
easy tool for categorizing different neural activities. There are 
some prerequisites for ANOVA: 

• Independence of observations – this assumption 
simplifies the statistical analysis.  

• Normality – the distributions of the residuals are 
normal.  

• Homogeneity of variances — the variance of data in 
groups should be the same.  

However, the statistical features of spike train data violate 
these assumptions and some characteristics of data were 
missing from taking the ratio of recorded data when 
conducting ANOVA analysis [10]. Kruskal–Wallis analysis 
of variance is a non-parametric method for testing whether 
samples originate from the same distribution. It is used for 
comparing more than two independent or unrelated samples. 
Since it is a non-parametric method, Kruskal–Wallis test does 
not assume a normal distribution or homogeneity of variances, 
unlike its parametric equivalent ANOVA. These attributes 
accord with the statistic features of spike train data [9]. Due to 
fewer restrictions and a wider applicability, Kruskal-Wallis 
test could be an efficient method for detecting statistical 
changes of spike train among different time intervals related to 
certain behavior events. 

Kruskal-Wallis test was applied to the datasets of neuron 
units’ average firing rate within TR, CH, HR, and TH2. The 
null hypothesis was that a certain neuron’s average firing rate 
followed the same distribution within these 4 intervals. The 
test statistic was given by: 
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Where k was the sample number, namely the number of 
time intervals in this study. nj (j=1, 2… k) was the sample size 
for the jth sample, namely the number of successful behavior 
trials in a dataset. N=Σn

j=1nj. Rj was the sum of ranks for the jth 
sample. Since H~χ2(k-1), for a given significance level α, if 
H≥χ2

α(k-1) is true, the null hypothesis can be rejected. Thus 
the average firing rate of a certain neuron can be recognized as 
varying significantly between given motion stages. The 
Kruskal-Wallis test leads to significant results when at least 
one of the samples is different from the other samples. 
However, the test does not identify where the differences 
occur or how many differences actually occur. To overcome 
this shortcoming, we used multiple comparisons to determine 
during which paired intervals a neuron’s discharging patterns 
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changed most significantly. When tests on all neurons were 
finished, we identified the active periods of each neuron and 
categorized them according to the test results. Data analysis 
programs were implemented in MATLAB (Mathwork Inc.).  

TABLE II.  NEURON SELECTION CRITERIA 

Category 
number 

Discharging rate changed 
during which two time intervals  

Such neurons could 
be used for 
identifying:  

1 TR CH Squatting still to start 
moving downward 

2 CH HR Moving downward to 
standing still 

3 HR TH2 Standing still to 
moving upward 

4 CH TH2 Moving downward 
and moving upward 

Neuron selection can be performed easily with categorized 
information. Our criteria of selecting neurons for decoding 
lower limb movement transitions are summarized in Table II.  

The average firing rates within certain intervals of selected 
neurons were assembled as feature vectors for classification. 
An SVM classifier [11] was employed to discriminate 
different movement stages offline. Radial basis function was 
chosen as the kernel function of our SVM model in preference 
of its good learning performance and wider convergence 
region. The parameters of the kernel function were decided by 
N-fold cross validation. Both training and testing data set were 
selected randomly and normalized to the interval of [0, 1]. 
Neuron firing rate within 60 successful trials formed the 

training set and were divided into 4 parts to fulfill the cross 
validation. Another 60 successful trials formed the testing set. 
Lib-SVM [12] was adopted for SVM implementing.  

III. RESULTS AND DISCUSSION 

A. Neuron Categorizing 
947 neurons were sorted from 94 datasets for monkey 

Hippie while 1011 neurons from 97 datasets for Vivo.  
Kruskal–Wallis test (α=0.05) and multiple comparisons were 
conducted on all sorted neurons. Table III summarizes the 
quantities of each neuron category in both monkeys. 

TABLE III.  THE QUANTITIES OF EACH NEURON CATEGORY AFTER 
KRUSKAL-WALLIS TEST AND MULTIPLE COMPARISONS 

Category 
number 

Discharging rate 
changed during which 
two time intervals 

Quantities of 
neurons 
Hippie Vivo 

1 TR  CH 424 486 
2 CH HR 229 261 
3 HR TH2 283 689 
4 CH TH2 368 618 

From Table III, we can infer that there are neurons whose 
discharging patterns change within more time intervals, e.g., 
TR to CH and CH to HR. The complex linkage among 
neurons in motor cortex contributes to this phenomenon. 
Using the selecting method described above, the active stages 
of each neuron involved in lower limb motor control were 
identified.  
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Figure 2.  Peri-event raster and time histogram (bin size: 20ms) of 4 randomly selected neurons. In each peri-event raster, the 
relationship between spike timestamps and reference events in each successful trial is showed. The colored identifiers (circle, triangle 
and square) on peri-event raster subplots indicate certain event time point in each trial. (A) a neuron featured the transition from TR 
to CH; (B) a neuron featured the transition from CH to HR; (C) a neuron featured the transition from HR to TH2; (D)(E) a neuron 
which had different discharging patterns in downward and upward movement process. This neuron could be incorporated for 
discriminating downward and upward movement. 
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B. Validation of Neuron Selection 
According to the results above, we randomly selected 

several neurons from each category and plotted the peri-event 
raster and time histogram to confirm the accuracy and 
reliability of our neuron selecting method, as shown in Fig.2.   

The results in Fig. 2 show that the intuitive observations 
(peri-event raster and time histogram) of neuron activity 
match our categorizing method well. In Fig. 2 (A), the 
neuron’s firing rate increased significantly after the event of 
Center Release, which featured the transition from TR to CH. 
In Fig. 2 (B), the neuron’ s firing rate from Target Hit to 
Target Release was notably higher than that within the 
previous time interval, which featured the transition from CH 
to HR. Fig. 2 (C) shows a neuron which featured the transition 
from HR to TH2 with its firing rate decreasing dramatically 
after Target Release. Fig. 2 (D) (E) show a neuron identified 
by our categorizing criterion, which discharged quite 
differently in downward and upward movement processes. 
Furthermore, the peri-event histogram indicates this neuron 
was more active within upward movement. Obviously, this 
neuron can be incorporated in our study for discriminating 
upward from downward movement. 

TABLE IV.  CLASSIFYING ACCURACY WHEN INCORPORATING 4, 8, AND 
16 SELECTED NEURONS’ DISCHARGING RATE DATA IN SVM CLASSIFIER 

Movement 
transitions  

Hippie Vivo 
Neurons 
number 

Accuracy Neurons 
number 

Accuracy 

TR  CH 4 90.00% 4 63.00% 
8 92.50% 8 90.00% 
16 100% 16 100% 

CH HR 4 90.00% 4 63.00% 
8 87.50% 8 71.67% 
16 100% 16 90.00% 

HR TH2 4 95.00% 4 87.00% 
8 100% 8 85.00% 
16 100% 16 100% 

CH TH2 4 87.50% 4 87.00% 
8 87.50% 8 87.00% 
16 100% 16 93.00% 

C. Movement Transition Classification 
The accuracies of various movement transition 

discriminations with SVM classifier are summarized in Table 
IV. For comparison, we incorporated different numbers of 
neurons to form feature vectors. The neurons were chosen 
randomly within their corresponding category. 

The results in Table IV suggest that neuron selection 
before classification can contribute to the performance of 
movement transition identification. Incorporating neurons 
without delicate selection, given the large size of the neuron 
dataset, would be foolhardy and decoding accuracy may be 
undermined. The results suggest that incorporating more 
neurons to form larger feature vectors may improve 
classifying accuracy at the cost of more temporal delay and 
memory consumption. Thus the trade-off should be carefully 
considered before implementation.  

IV. CONCLUSION 
In this study, we analyzed the spike train data correlated 

with lower limb motor control in standing and squatting tasks. 

Considering the absence of normality and homogeneity of 
variances in the spike train data, we applied the Kruskal- 
Wallis test to evaluate whether the average discharging rate of 
each neuron changed significantly among different motion 
stages and to categorize neurons according to their active 
periods. Neuron selection was accomplished based on 
category information and a SVM classifier was used to 
discriminate different movement stages.  

The results indicate that our neuron selection method was 
accurate and efficient in finding neurons correlated with 
movement transitions in standing and squatting tasks and that 
such transitions can be identified accurately with the selected 
neurons’ spike train data. Further application of our method in 
neural controlled lower limb prostheses may be feasible.   

 Future work includes applying the neuron selection 
method proposed in this paper on chronically recorded neural 
datasets and developing on-line decoding algorithms. 
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