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Abstract— Performance of robotics based hand-held surgical
devices in real-time is mainly dependent on accurate filtering
of physiological tremor. The presence of phase delay in sen-
sors (hardware) and filtering (software) processes affects the
cancellation accuracy. This paper focuses on developing an
estimation algorithm to improve the estimation accuracy in the
presence of phase delay for real-time implementations. Moving
window based online training approach for least squares-
support vector machines (LSSVM) is employed in this paper
for tremor estimation. A study is conducted with tremor data
recorded from the subjects to analyze the suitability of proposed
approach for both single-step and multi-step prediction.

I. INTRODUCTION

Physiological tremor has been the main cause for hu-

man imprecision in microsurgical procedures [1], [2]. For

real-time tremor compensation in microsurgeries, hand-held

robotics based instruments are developed, in [1]–[3], to

retain the advantages possed by the human surgeons and to

augment the tip position accuracy. To separate the tremulous

motion from the sensed motion by accelerometers, bandpass

filter was employed in [2], [3]. Moreover, this filtering

stage is also required to compensate the unwanted numerical

integration drift, noise and jerk [2]. To estimate the filtered

tremor signal adaptive algorithms based on Fourier series [1],

[2] (weighted frequency Fourier linear combiner (WFLC)

and band limited multiple linear Fourier combiner (BMFLC))

were developed. Comparative performance of all adaptive

tremor estimation methods can be found in [2].

In real-time implementation, this bandpass filtering stage

introduces a phase delay of 20ms. As the dominant fre-

quency of physiological tremor is from 8−12 Hz, this phase

delay will adversely affect the real-time tremor estimation

accuracy [3]. To overcome this phase delay, modifications

to BMFLC and WFLC are proposed in [3]. However the

methods are applicable to pre-filtered band-limited signals.

To address this problem, we propose a method based on

least- squares support vector machines (LS-SVM) to perform

the multi-step prediction of physiological tremor.

LS-SVM generally has been employed for function esti-

mation, system identification and prediction applications [4],

[5]. The standard LS-SVM algorithm requires offline training

with a fixed number of training samples. However offline

training algorithms are not suitable for non-stationary time

series prediction applications. To improve the performance of

LS-SVM and to track the dynamic changes in tremor signal,
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online training for LS-SVM is proposed in this paper. In this

paper, estimation of tremor signal is performed with online

moving window LS-SVM (MWLSSVM). A study is con-

ducted on tremor data of five subjects to review the suitability

of the proposed approach for single-step and multi-step

tremor prediction. Simulation results show that MWLSSVM

improves the estimation accuracy in the presence of phase

delay.

II. METHODS

In this section, we first present the basic formulation of

standard LS-SVM. Later, the proposed online training ap-

proach for LS-SVM and tremor prediction with the proposed

method are discussed.

A. Standard LS-SVM [5]

LS-SVM is the least squares version of support vector

machines (SVM). In LS-SVM, Vapnik’s ǫ− insensitive loss

function has been replaced by a mean square error cost

function [5]. Due to this reformulation, optimal solution

with LS-SVM is obtained directly by solving a set of linear

equations rather than a convex quadratic program. Moreover,

computational complexity of LS-SVM is less compared to

SVM because of this reformulation.

For N samples of training data {xi, yi}
N
i=1 with xi as input

and yi as the corresponding output, the regression model for

LS-SVM is;

y = wTϕ(x) + b (1)

where x ∈ ℜn, y ∈ ℜ; w is the weight vector, ϕ(·) is the

mapping of input to the higher dimensional feature space

and b is the bias. In LS-SVM, the optimization problem for

the function estimation is defined as follows:

min
w,b,e
J(w, e) =

1

2
wTw+ C

N
∑

i=1

e2i (2)

subject to the constraints yi = wTϕ(xi) + b + ei; i =
1, 2, · · · , N. Where C is the user-defined regularization

constant which balances the model’s complexity and approx-

imation accuracy and ei is the estimation error.

The corresponding Lagrangian function for optimization

problem is defined as

L(w, b, e;α) = J(w, e)−

N
∑

i=1

αiw
Tϕ(xi) + b+ ei − ni (3)

with the Lagrangian multipliers αi ∈ ℜ, i = 1, 2, · · · , N .
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After eliminating ei and w from the Karush-Kuhun-Tucker

(KKT) [5] conditions for optimality obtained from (3), the

solution is obtained as

δN = Ψ
−1
N yN (4)

where δN = [b, α1, · · · , αN ]
T , ΨN =

[

0
−→
1 T

−→
1 T Ω+C−1

I

]

,
−→
1 = [1, 1, · · · , 1]T , y =

[y1, y2, · · · , yN ]
T and Ω follows Mercer’s condition

[5], Ωij = K(xi, xj) = ϕ(xi)
Tϕ(xj) i, j = 1, 2, · · · , N ,

here K(·, ·) is the Kernel function. In this work RBF Kernel

function is employed, K(x, xi) = exp
{

− ||x−xi||
2

σ2

}

.

From (1) and (4), the prediction model with LS-SVM is

obtained as

ŷ(k + T ) =

N
∑

i=1

αiK(xi, xk) + b; k = N + 1, · · · , l. (5)

where b and α are from δN , equ. (4) and l is the length of

test signal.

The performance of LS-SVM relies on the correlation

between the characteristics of training signal and the testing

signal. High correlation yields high accuracy. As tremor

signal is non-stationary in nature, the correlation factor is

very less. In order to make effective estimation with LS-

SVM, training set has to be updated at every iteration.

Moreover, this incrementing of training set for every sample

is computationally expensive. Several online training algo-

rithms for SVMs have been previously proposed in [4],

[6]. In this paper, we employed a similar online training

approach for LS-SVM, [4], [6]. Further, few modifications

are proposed for the online training of standard LS-SVM

in order to make it suitable for real-time applications by

reducing the computational complexity.

B. Moving window LS-SVM (MWLSSVM)

For online training of LS-SVM, whenever a new sample

arrives, the trained offline LS-SVM is updated by incre-

menting the training set with the new sample and there by

discarding the oldest sample in the training set as shown

in Fig. 1. To decrease the computational complexity, in-

cremental algorithm is employed to increment the training

set and decremental algorithm to discard the oldest sample.

This moving window training approach allows LS-SVM

to track the non-stationary dynamics in the tremor signal

more effectively.The incremental and decremental algorithms

employed for MWLSSVM are discussed below:

1) Incremental algorithm: Let (xN+1, yN+1) be a new

data pair, then incremental algorithm updates the trained LS-

SVM (of N data pairs) by adding the new data pair and then

computes the inverse of the matrix in (4), for N+1 data pairs

(ΨN+1), without explicitly calculating the inverse of matrix.

From (4), the solution for the optimal conditions with the

incremented training set (N + 1 data pairs) is given by

δN+1 = Ψ
−1
N+1 yN+1 (6)
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Fig. 1. Block diagram representation for tremor prediction with
MWLSSVM

where δN+1 = [b, α1, · · · , αN , αN+1]
T , ΨN+1 =

[

ΨN a

aT c

]

, a = [1;K(x1; xN+1); · · · ;K(xN , xN+1)], c =

C−1 +K(xN+1, xN+1) and yN+1 = [yN ŷk+T ]
T .

Incremental algorithm updates Ψ−1
N+1 from Ψ−1

N without

explicit computation of the matrix inverse. The mathematical

proof for calculating the augmented matrix is well docu-

mented in [7] and the main result is reproduced here:

Ψ−1

N+1 =

[

Ψ−1

N
0T

0 0

]

+[c−a
TΨ−1

N
a]−1

[

Ψ−1

N
a

−1

]

[aTΨ−1

N
−1]

(7)

where Ψ−1
N is obtained from trained LS-SVM, c and a

are obtained from (6). The updated Lagrangian multipliers

(αN+1) and bias (b) due to the addition of new data pair are

also calculated from (6).
2) Decremental algorithm: With this algorithm, the out-

of-date information is removed from the training data pairs

and this maintains a constant number of data pairs to perform

multi-step prediction. Similar to the case of incremental

algorithm, to avoid matrix inversion, Ψ−1
N is updated from

Ψ−1
N+1, here Ψ−1

N is the inversion of matrix ΨN+1 without

kth row and kth column.

Let (xk, yk) be the data pair to remove from the N + 1
data pairs. Without explicitly calculating the matrix inversion

for the N data pairs, the update rule was obtained in [6] as

Ψij = Ψij −
ΨikΨkj
Ψkk

(8)

where i, j = 1, · · · , N ; i, j 6= k, Ψij stands for ith row and

jth column of Ψ−1
N+1

From (4), the corresponding Lagrangian multipliers and

bias values are computed for the updated N data pairs. With

the updated Lagrangian multipliers and bias, prediction is

performed with (5).

C. Multi-step prediction of tremor with MWLSSVM

To perform multi-step prediction of physiological tremor

with MWLSSVM, consider N samples of tremor data to

form a training set i.e, {xi, yi}
N
i=1; where xi represents

tremor signal x(k) and past n samples of x(k) i.e. xi =
[x(k), x(k − 1), · · · , x(k − n)] and yi is T samples ahead

value for xi i.e. yi = x(k + T ).Algorithmic representation

for the procedure employed for predicting tremor by updating

the training set at each instant of time with MWLSSVM is

provided in Algorithm 1.
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Initialize: Number of training sets (N), Constant (C),

Kernel variance (σ2) and Number of samples ahead

prediction (T)

Offline training: Solve (4), store Ψ−1
N .

while when a new sample arrives do
Incremental algorithm:

increment the trained LS-SVM training set;

compute Ψ−1
N+1 with (6);

Decremental algorithm:

discard the oldest sample in training set;

compute new Ψ−1
N from (8);

Prediction:

update the parameters, Lagrangian multipliers and

bias from (4);

perform tremor prediction with (5);

end
Algorithm 1: MWLSSVM for tremor prediction

III. RESULTS

In this section, we first discuss about the physiologi-

cal tremor data collection. Later, performance analysis of

MWLSSVM for single-step tremor prediction and multi-step

prediction is discussed.

The performance analysis of all methods are discussed

with tremor data of 5 subjects with 4 trials/subject. To

quantify the performance, we employ the root mean square

(RMS) defined as RMS(s) =

√

(
∑k=m
k=1 (sk)

2/m), where

m is the number of samples and sk is the input signal at

instant k. Based on RMS, %Accuracy is defined as

%Accuracy = RMS(s)−RMS(e)
RMS(s) × 100;

where e is the prediction error between the actual signal and

the predicted signal.

A. Physiological Tremor Data

Physiological tremor data of 5 subjects, 4 trials data

per subject is considered for analysis in this paper. Two

tasks (tracking and tracking) are performed by the subjects.

Sampling rate of 250 Hz is employed. For more information

on data collection, protcol and conditions, see [8].

B. Parameter Selection for MWLSSVM

Performance of MWLSSVM mainly relies on the ini-

tialization of parameters: number of training samples (N),

variance in RBF kernel (σ) and the constant (C). To identify

the optimal values to initialize these parameters, a study was

conducted on tremor data over a range of parameters to attain

minimum RMS.
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Fig. 2. Selecting the optimal value of N for tremor modeling.

Selection of optimal number of samples (N ), required for

offline training is crucial for accurate prediction. For identi-

fication, the estimation accuracy obtained with MWLSSVM

for various number of training samples is shown in Fig. 2.

Results show that N = 250 is the optimal number of training

samples required for tremor prediction with MWLSSVM.

To find the optimal values to initialize C, σ and n, we

conducted a study on estimation accuracy over a range for all

parameters for constant N = 250. The identified parameters

are provided in Table. II. Further, these values remained

constant with very less variation for different values of N .

1) Single-step prediction with MWLSSVM: To perform

single step prediction with MWLSSVM, the 1 sec (N=250)

data of Subject #3(tracing task) is used for training the LS-

SVM. The proposed approach is employed for single-step

prediction from 1 sec onwards. Actual tremor and estimated

signal with MWLSSVM is shown in Fig. 3(a). The prediction

error is shown in Fig. 3(b). For comparison, LS-SVM method

is employed for prediction and the estimation error obtained

is shown in Fig. 3(c). The average estimation accuracy

obtained for single-step prediction with MWLSSVM for 5

subjects tremor data over all trials is 96.62± 1.24%.
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Prediction error with LS−SVM
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Fig. 3. (a) Tremor signal (Subject #3, tracing task) along with estimated
signal by MWLSSVM; (b) Prediction error with MWLSSVM; (c) Prediction
error with Standard LS-SVM.

Recently, in [2], a comparative study was conducted on

all existing adaptive tremor estimation methods. In order to

validate our proposed approach, we compared the estimation

accuracy of MWLSSVM with BMFLC-KF [2], WFLC-

KF [2] and LS-SVM. Results are tabulated in Table. I.

MWLSSVM shows good estimation performance.

TABLE I

COMPARISON WITH EXISTING METHODS

S.No. Method % Accuracy

1 WFLC-KF 92.43± 0.64
2 BMFLC-KF 99.97± 0.02
3 LS-SVM∗ 94.54± 2.56
4 MWLSSVM 96.62± 1.24

∗Initialization for LS-SVM is same as MWLSSVM

2) Multi-step prediction: In general, to filter the tremor

data from the sensed motion (voluntary and tremor motion),

5th order Butterworth filter with pass band 7-14 Hz is
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employed in surgical robotic devices [1], [3]. This filtering

stage introduces a delay of approximately 20ms in tremor

compensation procedure. In the presence of this frequency

dependent delay, estimation accuracy drops to 8 ± 1%. For

illustration, the prediction error obtained with MWLSSVM

for single step prediction in the presence of phase delay

is shown in Fig. 5(b). In order to improve the estimation

accuracy in the presence of phase delay, multi-step prediction

of tremor with MWLSSVM is performed.

TABLE II

METHODS & PARAMETERS

Method Model parameters and initial conditions

WFLC-KF f0 = 7 Hz; µ0 = 1.10
−5; µ1 = 5.10

−4;
M = 1; R = 0.01 ;Q = 0.01 × I; P0 = 0.01× I;

BMFLC-KF ω1 − ωn = 7− 14 Hz; ∆ω = 0.1; R = 0.01;
Q = 0.01× I; P0 = 0.01× I;

MWLSSVM N = 250; C = 100; σ = 0.0001; n = 12;

Prediction

error

Multi-step prediction

Zero phase 

bandpass filter
Sensed motion from 

accelerometer 

(Voluntary+Tremulous motion) 

Bandpass

 filter (2-20 Hz)
MWLSSVM

Predicted 

Tremor

Actual 

Tremor

Zero phase 

bandpass filter
LS-SVM

Validation

Tremulous

motion

Fig. 4. Procedure employed for multi-step prediction with MWLSSVM.

The procedure employed to perform multi-step prediction

with MWLSSVM is shown in Fig. 4. In the testing phase

to analyze the performance of multi-step prediction with

MWLSSVM, frequency dependent delay is introduced by

employing a bandpass filter as shown in Fig. 4. As delay of

16-20ms is involved due to the pre-filtering, we performed

multi-step prediction for 20 ms (5 samples). To quantify the

performance, analysis is conducted on tremor data of 5 sub-

jects with 4 trials/subject. The average estimation accuracy

obtained is 60.1± 6.85%. To validate the proposed method,

we also present the performance analysis of MWLSSVM

together with WFLC-KF [9] and standard LS-SVM in Table.

III. For illustration, prediction error for all methods with

20ms of prediction is shown in Fig. 5Results show that

proposed multi-step prediction method improves estimation

accuracy by more than 50% compared to single-step predic-

tion methods. Moreover, proposed method outperforms other

existing multi-step tremor prediction methods.

TABLE III

MULTI-STEP PREDICTION PERFORMANCE ANALYSIS

S.No. Method % Accuracy

1 WFLC-KF [9] 42.54 ± 2.64
3 LS-SVM 52.32 ± 8.56
4 MWLSSVM 60.1± 6.85

IV. CONCLUSIONS

In this paper, multi-step prediction of tremor is employed

to improve the estimation accuracy in the presence of
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−20

0

20
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µ m

Tremor signal

(a)
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−20
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Prediction error with Phase delay
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Time(s)
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Fig. 5. Multi-step prediction error with prediction horizon of 20ms (5
samples) (a) Tremor signal (Subject #3, tracing task) ; (b) Single-step
prediction error due to frequency dependent phase delay; (c-e) Multi-step
prediction error with WFLC-KF, LS-SVM and MWLSSVM respectively.

phase delay. The effectiveness of the proposed technique

MWLSSVM has been analyzed with tremor data of several

subjects thru simulation results. An average estimation accu-

racy of 60% is obtained with the multi-step prediction with

MWLSSVM for 20 ms ahead prediction.
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