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Abstract—An automatic artifact removal method of 

magnetoencephalogram (MEG) was presented in this paper. The 

method proposed is based on independent components analysis 

(ICA) and support vector machine (SVM). However, different 

from the previous studies, in this paper we consider two factors 

which would influence the performance. First, the imbalance 

factor of independent components (ICs) of MEG is handled by 

weighted SVM. Second, instead of simply setting a fixed weight 

to each class, a re-weighting scheme is used for the preservation 

of useful MEG ICs. Experimental results on manually marked 

MEG dataset showed that the method proposed could correctly 

distinguish the artifacts from the MEG ICs. Meanwhile, 

99.72%0.67 of MEG ICs were preserved. The classification 

accuracy was 97.91%1.39. In addition, it was found that this 

method was not sensitive to individual differences. The cross 

validation (leave-one-subject-out) results showed an averaged 

accuracy of 97.41%2.14.  

I. INTRODUCTION 

Magnetoencephalography (MEG) provides non-invasive 

and real-time monitor of dynamic behavior and neural activity 

of the human brain on a millisecond time-scale. An advantage 

of MEG is that it does not face volume conduction effect as 

strong as electroencephalography (EEG) [1]. In addition, 

compared with other brain imaging methods, such as 

functional magnetic resonance imaging (fMRI) which is 

limited in temporal resolution to second timescales, MEG has 

better resolution in both temporal and spatial domains. Similar 

to EEG recording, MEG can be contaminated by 

physiological artifacts from various sources, such as eye 

movements, muscular contractions, cardiac signals, sudden 

high-amplitude changes, and environmental noise [2]. In 

recent years, independent component analysis (ICA) [3] is 

achieving very successful results in separating artifacts from 

brain signals [4, 5]. 

With ICA, the raw brain signals could be decomposed into 
different independent components (ICs) effectively. However, 
these ICs include artifactual ICs and meaningful MEG ICs. In 
general, ICA-based artifact removal methods suggest 
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identifying and removing the artifactual ICs by manual 
inspection. But this process is very exhausting especially for 
multichannel signals like MEG which usually contain more 
than 100 channels. In order to remove artifacts automatically, 
support vector machine (SVM) was used to discriminate 
artifactual ICs from MEG ICs [6, 7]. By this way, the artifact 
could be removed effectively. However, there are still some 
problems which have not been taken into consideration. First, 
the balance of datasets needs to be taken into account. In fact, 
for MEG data, the ICs representing artifacts and brain 
activities are commonly imbalance. Further, when faced with 
imbalanced datasets, the performance of SVM may 
deteriorate significantly [8]. Second, there are still researches 
that use raw MEG even by exhausting visual inspection[9] to 
cut out relatively high quality MEG epochs, because there is 
an argument that ICA may eliminate not only artifacts but also 
useful MEG components. Therefore, we propose a method by 
which the useful MEG ICs can be well retained, while 
denoising. Considering artifacts and MEG ICs as positive 
class and negative class respectively, it is inevitably 
misclassifying the negative class into positive class when the 
specificity of classifier is not 100%, and which will result in an 
insufficient preservation of MEG ICs. 

We propose a method to solve the two problems 
mentioned above by using weighted SVM to handle the 
imbalance ICs dataset and boost specificity of classifier by 
re-weighting the sample’s weight of the negative class. The 
advantage of the proposed method is shown in a manually 
marked MEG ICs dataset. 

II. METHODS 

A. Independent Component Analysis (ICA) Method 

Independent component analysis (ICA) is now an 

important tool to separate empirical datasets. For the 

multichannel time series ( )X t , ICA method is trying to 

estimate the mixing matrix W  and the source time series 

( )s t  which is statistically independent each other in each 

time: 

 ( ) ( )X t s t W . (1) 

ICA mainly considers to separate time independent 
sources from linearly mixed data. In brain signal processing, 
we assume that meaningful brain activity is independent of 
artifact. Therefore, ICA can separate raw data to sources of 
brain activity and sources of artifact respectively. Therefore, 
ICA can be used to separate the components produced by 
muscle movement and cardiac artifact from the data. 
Generally, ICA performances are good in the field of artifact 
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and noise detection because the non-Gaussian criterion in ICA 
estimation makes ICA more sensitive to non-Gaussian 
components. Meanwhile, interesting components of 
oscillations in brain are not far from Gaussian in statistics [10]. 
Artifacts usually show strong non-Gaussianity. In this work, 
we used FastICA [11] to calculate the sources and mixing 
matrix. For more details, see ref [6]. 

B. Weighted Support Vector Machine (WSVM) 

WSVM was proposed for unbalance datasets [8]. There 

are three options for unbalance data: cost sensitive learning, 

oversampling the minority class, and undersampling the 

majority class. WSVM applies cost sensitive learning on SVM. 

In this work, WSVM was applied by modified C-Support 

Vector Classification (C-SVC) [12]. Given set of training 

samples with labels 1 1{( , ),...,( , )}l lx y x y , {1, 1}iy   , 

WSVM solves the following optimization problem: 
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where ix   maps ix  into a higher-dimensional space from 

the input space, 0C  is the regularization constant and 

iw is the ith weight parameter corresponding to the ith sample. 

Class 1 is the artifact class; class -1 is the MEG class. Usually, 

we solve the following dual form of (2): 
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where ( , ) T
j ji ik x x x x       is the kernel function. In 

this research, 22( , ) exp( || || /2 )jji ik x x x x    , the 

RBF kernel, was used. Parameters C  and   were decided 

by 5 fold cross-validation at the beginning. The initial value of 

iw  are given as follows: 
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In this work, WSVM classifier was trained by LIBSVM 

Tool: Weights for data instances [13]. 

C. Re-weighting SVM 

In order to provide the classifier with better specificity, the 

re-weighting technique was used to update the weights of 

training samples as shown in Table I. The accuracy, 

specificity and sensitivity are defined as follow: 
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where TN, TP, FN, and FP are the numbers of true negative, 

true positive, false negative, and false positive, respectively. 

We focused on boosting specificity of classifier under 

acceptable sensitivity. Therefore, we re-weighted the weights 

of the MEG class (real negative) in order to get better 

specificity, and updated the weights of the artifact class (real 

positive) only when specificity of classifier was equal to 1. 

D.  Feature Extraction 

For training classifier, it is needed to input some features 
to WSVM. In this research, we extracted five features, the 
same as ref [6, 7], from each component which obtained by 
ICA. 

1) Kurtosis 

Kurtosis, also called the fourth-order cumulant is a 

classical measure of non-Gaussianity. For a Gaussian x  

kurtosis is equal to 1. It has been successfully used to detect 

artifacts in ref [14]. For most of non-Gaussian random 

variables, kurtosis is not equal to 1. In this work, a log 

normalized kurtosis was defined for zero mean random 

variable x  as follows: 

 44log( [ ] / 3 ),K E x   (8) 

where  is the standard deviation of x . 

2) Probability Density 

Usually cardiac artifact has a peak at minimum or 

maximum point of its histogram [6]. So we estimated the 

probability density function and cumulated the mean ratio 

TABLE I. SUMMARY OF C. RE-WEIGHTING SVM 

1. Input: a set of training samples with labels 1 1{( , ), ,( , )}l lx y x y , 

{1, 1}iy   ; the step of iw , stepw ; the maximal number of cycles T. 

2. Initialize: 0t  ; the weights of training samples 
t
iw as (4); learning 

C and  on the weighted training set by cross-validation before 

iteration; calculate initial accuracy  . 

3. While  1  and t T  

a) 1t t  . 

b) Train a RBFSVM classifier, ( )tf x , on the weighted training set. 

c) Calculate the accuracy, specificity and sensitivity of ( )tf x ,  , 

spec  and sen  on training set. 

d) If spec 1   
1

stepexp( ( ) ) / , ( ) 1, 1t t

i i i t i t i t i iw w y f x w K y f x y      ,  

tK  is a constant to normalize t

jw equal to l . 

Else 
1

stepexp( ( ) ) / , ( ) 1 1,
t t

i i i t i t i t i iw w y f x w K y f x y     ,  

tK  is a constant to normalize t

jw equal to l . 

4. Output: ( ) ( )tf x f x  
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between both ends and highest peak in the IC’s histogram as 

(9). 

 min max( ( ) ( )) / max ( )PD P x x P x x P x     (9) 

where ( )P   is the probability density function obtained by 

histogram.  

3) Central Moment of Frequency  

Central moment of frequency (CMoF) was employed as 

the third feature. This feature could show the dominated 

frequency of each IC. The response of muscle movement 

usually shows different CMoF with the MEG component. 

CMof is defined as 
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where ( )n fP is the power spectral density corresponding to 

f . M is the number of frequency bins. 

4) Spectral Entropy  

The spectral entropy (SE) can quantify the flatness of the 

frequency spectrum  [5] as follows: 
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5) Fractal Dimension  

Fractal dimension has been successfully used to extract 

feature from brain signals [15]. This value can describe the 

smoothness of the brain signal waveform. In this work, the 

variance fractal dimension (VFD) [6] was used to estimate the 

FD of ICs. The normalized FD is given as follow: 
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where x is equal to ( ) ( )x t x t t  . The limit in (12) can 

be estimate by the slope of the least-square fitted line of the 

plot 2log kn  and 2log ( ( ) ( ))kD x t x t n  . In this work, 

we set 2k
kn  , 2log1,...,[ ] 2k N  , and N is the 

length of IC. 

III. EXPERIMENTS AND RESULTS 

A. MEG Data 

MEG datasets included 10 healthy children’s MEG data (5 

boys, 5 girls). The average age of children was 65.4 months. In 

order to keep the subjects stay calm, the subjects were allowed 

to watch video during the experiment. MEG data were 

recorded by a whole-head coaxial gradiometer system (PQ 

1151R; Yokogawa/KIT) for children with 151 channels 

superconducting quantum interface device in a magnetically 

shielded room under resting state. The measurement of data 

was approved by the Ethics Committee of Kanazawa 

University Hospital.  

The data were separated to 1326 ICs by FastICA. In this 

work, we did numerical experiments on 956 ICs in the dataset 

which was marked as artifactual ICs and MEG ICs by manual 

inspection. The experimental dataset included 646 MEG ICs 

and 310 artifacts. The artifacts included cardiac, ocular, 

muscular and sudden high-amplitude change artifacts. We 

omitted other 370 ICs because those ICs were automatically 

not manually marked as ocular artifacts in the dataset by 

threshold method in previous research which may not real 

artifacts but meaningful ICs [6]. 

B. Experiment I 

In the first experiment, we used all 956 ICs to test the 

proposed algorithm. The maximal number of iterations was 

set to 50. The results are shown in Figure 1. Accuracies were 

obtained using 1010 cross-validation. The SVM parameter 

C  and   were all decided for each trial separately also by 

1010 cross-validation. At the beginning of iteration, the 

classification accuracy, specificity and sensitivity of classifier 

were 97.73%1.55, 97.71%1.94 and 97.77%2.47, 

respectively. As shown in Figure 1, the specificity of classifier 

was boosted up by re-weighting samples in the MEG class. At 

the 39
th

 iteration, the specificity of classifier reached its 

maximal value 99.72%0.67. After the 39
th

 iterations, the 

value of specificity varied between 99.69% and 99.72%, 

indicating that the specificity of the classifier became 

saturated. With the increase of iterations, sensitivity continued 

to decline. At the 39
th

 iteration, sensitivity was 94.02%4.14. 

After 50 iterations, sensitivity was 91.67%4.99. The 

classification accuracy reached the maximal value 

98.26%1.38 at the 22
nd

 iteration. At the 39
th

 iteration, 

classification accuracy was 97.91%1.39 which was still 

higher than the initial classification accuracy. After 50 

iterations, the accuracy with 97.12%1.58 was still 

acceptable. 

C. Experiment II 

In this experiment, we tested the generalization property of 

classifier trained by proposed method. By dividing the 

subjects into a training group and a testing group, the trained 

classifier obtained from the training group was used to test the 

data in the testing group. Figure 2 showed the average and 

standard deviation of classification accuracy, specificity and 

 
Figure 1. Specificity, sensitivity and classification accuracies with their 
standard deviation (%) across iterations on the dataset. All accuracies are 

obtained by 1010 fold cross-validation. 
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sensitivity. Here, the result was obtained by 10 validations. In 

10 validations, all subjects had equal chance to be in the 

training group and the testing group. It was found that the 

classifier trained from certain subjects can be used to classify 

other subjects’ IC. Specificity and classification accuracy 

gradually increase with the number of subjects in the training 

set. The specificity, classification accuracy and sensitivity 

with leaving one subject out cross-validation were 

99.69%0.65, 97.41%2.14 and 92.01%7.16, respectively. 

IV. DISCUSSION 

The experiment I showed that after several iterations the 

specificity of classifier reached the maximal value. The 

specificity was nearly 100%. It means that the proposed 

method can preserve all MEG ICs after the artifacts removal. 

Meanwhile sensitivity was still acceptable. After the 

specificity is saturated, continuing to re-weight the samples’ 

weights cannot increase the specificity. Also the sensitivity 

will keep decreasing, and the re-weighting just over-fits the 

negative class. The sensitivity becomes unacceptable if 

iterations keep going. Therefore, the iterative process can stop 

when the specificity is saturation. The classifier will have the 

best specificity and acceptable sensitivity. Also the 

classification accuracy will be higher than the one without 

iterations. 

Besides, from Table I, we can find that the proposed 

method is similar to the re-weighting process of the adaboost 

algorithm [16]. Adaboost was proposed to enhance the 

classification accuracy of weak learner. In ref [17], authors 

indicated that strong learner like SVM also can be boosted by 

adaboost algorithm. In our method, the iterative process 

trained several classifiers which could be intergraded by 

adaboost. Then a better classification performance might be 

able to obtain. 

From the results of experiment II, it was found that this 

method was not sensitive to individual differences. 

Meanwhile, we can say the features which was proposed in ref 

[6] could represent the character of noisy ICs across different 

subjects. As we know, neurophysiological signals usually 

have peculiarity for each subject. Some researches employed 

features which can represent peculiarity of each subject like 

the relevance between IC and certain manually selected ocular 

IC [18]. But features in ref [6] extract the common character 

of all subjects. Furthermore, classifier which was well trained 

by sufficient dataset can be applied on all MEG signals. The 

algorithm proposed can train a classifier to automatically 

identify the MEG epoch. These features will disuse exhausting 

visual inspection for massive multichannel MEG data.  
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Figure 2. Specificity, sensitivity and classification accuracies with their 
standard deviation (%) across number of subjects. 
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