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Improving Transient State Myoelectric Signal Recognition in Hand
Movement Classification using Gyroscopes
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Abstract—Pattern recognition of myoelectric signals in
upper-limb prosthesis control has been subject to intense
research for several years. However, few systems have yet
been successfully clinically implemented. One possible expla-
nation for this discrepancy is that published reports mostly
focus on classification accuracy of myoelectric signals recorded
under laboratory conditions as the metric for the system’s
performance. These data are usually acquired only during the
static state of the contraction in a fixed seated position. This
supports the test subject in performing repeatable contractions
throughout the experiment and generally results in an unreal-
istically high classification accuracy. In clinical testing however,
subjects have to perform various activities of daily living,
causing the limb to move in different positions. These variations
in limb positions can significantly decrease robustness and
usability of myoelectric control systems. Recent reports have
shown that the so-called limb position effect can be resolved
for the static state of the signal by adding accelerometer
data to the feature vector. Including data from the transient
state of the signals for classifier training generally significantly
increases the classification error so it is mostly not considered in
published reports. In this paper, we investigate the classification
accuracy of transient EMG data, taking into account the limb
position effect. We demonstrate that a classifier trained with
features from EMG, accelerometer and gyroscope outperforms
classifiers using only EMG or EMG and accelerometer data
when classifying transient EMG data.

I. INTRODUCTION

Myoelectric signals have been used in upper-limb prosthe-
ses control schemes for more than 30 years [1]. Conventional
control schemes based on amplitude [2] or rate of change [3]
of the recorded signals can proportionally operate one degree
of freedom. Switching between different prosthetic functions
is usually achieved by using co-contractions [4].

One approach towards an intuitive and user friendly con-
trol scheme for upper-limb myoelectric prostheses is pattern
recognition. Pattern recognition based control schemes are an
active research area and can potentially enable the amputee to
intuitively operate multiple degrees of freedom [5]. They are
based on the assumption that a set of features extracted from
electromyographic (EMG) signals is repeatable for a specific
movement. The signal processing chain can be broken down
to three components: the feature extraction, the dimension-
ality reduction and the pattern classification. During the first
two steps attributes are extracted from myoelectric signals
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(MES) and reduced by selecting features for more robust
and accurate classification. In the last step pattern matching
algorithms are applied to detect the class of the input data [6].
Various feature extraction and classification algorithms have
been tested for upper-limb prosthesis control and achieved
high classification accuracies under laboratory conditions
[71-[12].

However, there are disparities between experimental perfor-
mance and actual clinical results. One challenging factor
in pattern recognition based control schemes is operating
the prosthesis in various limb positions. Scheme et al. [16]
showed that variations in limb positions used in the training
phase of the classifier can have a significant impact on
classification accuracy and robustness of the system. In their
work they demonstrated that a combined system of EMG and
accelerometer sensor data outperformed a EMG only system
in classifying 8 hand and wrist movements acquired in 8
different limb positions. A similar approach was presented
by Chen et al. [18].

Fougner et al. [13], [15] proposed training the classifier in all
possible positions and measuring the limb orientation with
accelerometers. In that study, 8 hand and wrist movements
recorded in 5 different locations were used. Additionally
to training in a single and multiple limb positions they
investigated a two-stage position aware classifier where the
limb position was first detected by a classifier based on
accelerometer data, followed by a position specific motion
classifier. This approach is tedious, as it requires the user to
perform training sets in each position. Another method pre-
sented is a single-stage position aware classifier where EMG
time domain features and features from the accelerometer
data were concatenated into one feature vector. The average
classification error could be decreased from 18% to 5%.
Most published reports including the aforementioned investi-
gating pattern recognition based myoelectric control schemes
in the context of the limb position effect only use the static
state of the EMG signal for classification. An EMG signal
representing a hand movement can be separated into a short,
approximately 1 s long transient state followed by the static
state of the contraction. Including signals from the transient
state into a static state based classification problem generally
results in an increase in classification error. Hargrove et
al. [14] investigated the usability of a pattern-recognition
based myoelectric control system using a virtual clothespin
test. The test involved repositioning a clothespin in a virtual
environment between two bars and counting the number of
pins successfully placed in a set of time or timing how
long it takes to place a given number of pins. As a result
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it was shown that adding transient state data along with
static state data to the classification problem, the average
pin placement time improved while the classification error
increased simultaneously.

In this paper we investigate the problem to classify the
transient state EMG signal in an experiment distinguishing
8 hand and wrist movements performed in 5 different limb
positions. First we use the accelerometer based method pre-
sented by Fougner and Scheme [13] to classify the transient
state signal and compare the result to using EMG signals
only. Then we introduce a hybrid classifier using EMG,
accelerometer and gyroscope data. We demonstrate that it
outperforms the EMG and accelerometer based method.
The paper is structured as follows. The setup of the EMG
and inertia measurement unit (IMU) sensor system and the
conducted experiment, as well as the signal processing and
feature extraction are presented in Section 2. The experi-
ments are evaluated in Section 3. Finally, Section 4 concludes
the paper.

II. EXPERIMENT
A. Methods

To investigate transient state classification problem in

context with the limb position effect, an experiment was
conducted. EMG, accelerometer and gyroscope data corre-
sponding to 8 hand and wrist motions were acquired from
two healthy normally limbed subjects (25 year old female,
26 year old male).
The EMG data were collected by a BioVision NeXus 16
[19] at 1024 Hz from four Ag/Cl electrode pairs on the
forearm. Each electrode had a diameter of 1 cm and the
center to center distance between adjacent electrodes was
about 1 cm. A reference electrode was placed on the elbow.
Accelerometer and gyroscope data were acquired by a CH
Robotics UM6 IMU [20] above the wrist of the subjects.
Fig. 1 illustrates the experimental setup. The experiment
consisted of four runs, each consisting of performing a se-
quential set of hand movements in 5 different limb positions
illustrated in Fig. 2. The test subject was prompted to perform
the following sequence of movements: wrist flexion (ml),
wrist extension (m2), pronation (m3), supination (m4), hand
open (m5), lateral grip (m6), pincer grip (m7) and relax
(m8). Each movement was held for 5 seconds, followed by
a 5 seconds pause. The movement can be subdivided into
a approximately 1 s transient state and a 4 s static state
of which the first 3 s were used for classification. This is
depicted in Fig. 4. The acquired EMG, accelerometer and
gyroscope data were grouped by limb position and equally
subdivided into a training data and a test data part.

B. Signal Processing

The data were segmented using a 250 ms sliding window
with 50 ms increment for feature extraction. Five time
domain features (mean average value, wave length, zero
crossings, sign slope change, autoregressive feature) were
extracted from the EMG signal. Two time domain features
(mean average value, wave length) were extracted from the

UMB6 inertia
measurement
unit

EMG
sensors

Fig. 1. Experimental setup showing placement of the EMG electrode pairs
and the location and orientation of the IMU. EMG signals were acquired
from (1) M. extensor capri ulnaris, (2) M. extensor digitorum communis,
(3) M. extensor capri radialis and (4) M. brachio radialis.

(b)

Fig. 2. The experiment data were acquired in following limb positions.
P1: Straight arm hanging down (a), P2: straight arm reaching forward (b),
P3: straight arm reaching up 45° (c), P4: humerus hanging at side, forearm
reaching forward 90° (d), PS: humerus hanging at side, forearm reaching
up 45° (e). llustration is based on [15].

accelerometer signal and two time domain features (mean
average value, root mean square) from the gyroscope data.
The raw data from one position (P2) is illustrated in Fig.
3. As classifier we use support vector machines which have
been successfully used for EMG signal classification [17].

ITI. RESULTS

A. Training in one position

First, we investigate the performance if the classifier
is only trained in one position and tested with the data
of the other positions. Therefore we create 4 groups of
classifiers: one only using EMG data (EMG), one using
EMG and accelerometer (EMG+ACC), one using EMG and
gyroscopes (EMG+GYR) and one using a combination of
EMG, accelerometer and gyroscopes (EMG+ACC+GYR).
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Fig. 3. Sample raw data of EMG (a)-(b), accelerometer (c)-(d), and gyroscope (e)-(f) corresponding to the 8 movements in position P2 are displayed.

The transient state is illustrated on the left, the static state of the movement on the right side of the figure. The time is depicted in the X-axis. In (c) and
(d), the Y-Axis indicates linear acceleration [m/s?], while in (e) and (f) the Y-Axis indicates angular velocity [°/s].
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Fig. 4. The EMG signal of one contraction is displayed. It consists of 1
s transient and 4 s static state of which the first 3 s were used, followed
by 5 s pause. Below one set of the experimental protocol consisting of 5
positions with 8 movements each is illustrated.

We also create 5 groups of training and test data: training
transient state, testing transient state (TR-TR), training static
state, testing static state (ST-ST), training transient and static
state, testing transient state (TRST-TR), training transient
and static state, testing static state (TRST-ST) and training
transient and static state, testing transient and static state
(TRST-TRST). The results are illustrated in Fig. 5. The
values displayed are averaged mean intra- and inter-position

errors. In the first column we see a high classification error
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Fig. 5. Results of the ’Training in one position’ experiment. The

classification error is shown on the y-axis.
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Fig. 6. Results of the ’Training in all positions’ experiment. The

classification error is shown on the y-axis.

of all classifiers due to the combination of limb position
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effect and the problem of transient state classification. EMG
alone shows the greatest difficulty to correctly classify the
transient state. EMG+GYR and EMG+ACC+GYR clearly
outperform EMG and EMG+ACC. A possible explanation of
the superiority of gyroscope data to accelerometer data can
be concluded from the raw data in Fig. 3 where the gyroscope
raw data shows a higher diversity than the accelerometer data
in the transient state.

ST-ST is dominated by EMG+ACC and EMG+ACC+GYR,
indicating that accelerometer data contains more useful infor-
mation about the static state than gyroscope data. In general,
setups where the transient state is tested are dominated by
EMG+ACC and EMG+ACC+GYR while setups where the
static state is classified are dominated by EMG+GYR and
EMG+ACC+GYR.

B. Training in all positions

In this section the classifiers use training data from all
limb positions. The results of this experiment are shown in
Fig. 6. The same classifier and training and test datasets as
in the previous experiment are used. It is noticeable that all
classification errors are significantly decreased compared to
training in one position.

As in the previous experiment EMG alone performs worst
when testing the transient state while EMG+GYR and
EMG+ACC+GYR perform best. The setups testing data from
the static state are again dominated by EMG+ACC and
EMG+ACC+GYR. When testing data from the static state
EMG+GYR shows about the same classification error as
EMG. This can also be directly concluded from the raw
data where it is evident that in the static state no additional
information is gained by the gyroscopes.

In both experiments the hybrid classifier consisting of EMG,
accelerometer and gyroscope data (EMG+ACC+GYR)
shows about the same as or better results than EMG+ACC
when testing the static state of the movement. When test-
ing the transient state, it EMG+ACC+GYR outperforms
EMG+ACC by 15%-45%.

IV. DISCUSSION

The results suggest that it can be beneficial to use gyro-
scopes as an additional input to EMG and accelerometer data.
Like accelerometers, gyroscopes are small, relatively cheap
and easily integrated into a prosthesis socket. Both inertia
sensors do not provide an estimation of muscle force, but the
results suggest that both can provide additional information
as classification input in a EMG pattern recognition system.
Although the experiment presented in this paper is more
realistic than many experiments from previous reports, they
are still performed in a laboratory setup. As such, we are
planning to repeat the experiment in a virtual environment
and using usability oriented metrices as an estimation for
the system’s performance. Also, gyroscope can probably

provide useful information about dynamic and simultaneous
movements which we will also investigate.
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