
  

 
  

 
Abstract— In many disciplines, data from multiple sources 

are acquired and jointly analyzed for enhanced knowledge 
discovery. For instance, in metabolomics, different analytical 
techniques are used to measure biological fluids in order to 
identify the chemicals related to certain diseases. It is widely-
known that, some of these analytical methods, e.g., LC-MS 
(Liquid Chromatography - Mass Spectrometry) and NMR 
(Nuclear Magnetic Resonance) spectroscopy, provide 
complementary data sets and their joint analysis may enable us 
to capture a larger proportion of the complete metabolome 
belonging to a specific biological system. Fusing data from 
multiple sources has proved useful in many fields including 
bioinformatics, signal processing and social network analysis. 
However, identification of common (shared) and individual 
(unshared) structures across multiple data sets remains a major 
challenge in data fusion studies. With a goal of addressing this 
challenge, we propose a novel unsupervised data fusion model. 
Our contributions are two-fold: (i) We formulate a data fusion 
model based on joint factorization of matrices and higher-order 
tensors, which can automatically reveal common and 
individual components. (ii) We demonstrate that the proposed 
approach provides promising results in joint analysis of 
metabolomics data sets consisting of fluorescence and NMR 
measurements of plasma samples in terms of separation of 
colorectal cancer patients from controls.  

I. INTRODUCTION 

Data fusion, in other words, joint analysis of data from 
multiple sources, has been shown to enhance knowledge 
discovery in many disciplines. For instance, in 
bioinformatics, jointly analyzing multiple data sets 
representing different organisms [1] or different tissue types 
[2, 3] improves the understanding of the underlying 
biological processes. Similarly, in metabolomics, biological 
fluids such as blood, are measured using different analytical 
techniques, e.g., LC-MS and NMR, and their fusion has the 
potential for more accurate biomarker identification [4].  

An effective way of jointly analyzing data from multiple 
sources is to represent data sets as a collection of matrices, 
and jointly analyze those matrices using collective matrix 
factorization [5]. Matrix factorization-based data fusion 
studies have been successfully applied in bioinformatics [1, 
2]. Recently, joint matrix factorization approaches have been 
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extended to joint analysis of heterogeneous data sets, i.e., 
data in the form of matrices and higher-order tensors [6, 7]. 
For instance, chemical mixtures measured using fluorescence 
spectroscopy can be represented as a third-order tensor with 
modes: mixtures, emission and excitation wavelengths while 
NMR measurements of the same mixtures can be represented 
using a mixtures by chemical shifts matrix (Figure 1). Joint 
factorization of such heterogeneous data has been commonly 
used to analyze multi-relational data in social networks [8, 9]. 

While there are many successful data fusion applications, 
identification of common and individual factors across 
multiple data sets is still a major challenge. The traditional 
formulation of joint factorization of data sets is based on 
modeling the common factors. However, data from multiple 
sources often have both common and individual factors. 
Ignoring unshared factors may affect the shared factors as 
well. In this paper, we develop a new data fusion model for 
joint factorization of heterogeneous data in order to identify 
common and individual components. Using numerical 
experiments, we demonstrate that while the traditional 
formulation modeling only common factors fails to capture 
the underlying structures, the proposed approach achieves to 
identify shared and individual components accurately. 
Several studies have recently discussed methods revealing 
common and distinctive  components [1, 10, 11]. However, 
these studies focus on coupled matrix factorizations. Our 
contributions can be summarized as follows: (i) Introducing a 
new data fusion model for joint factorization of matrices and 
higher-order tensors, which can identify the common and 
individual components across multiple data sets 
automatically. (ii) Demonstrating the effectiveness of the 
proposed approach on simulated data and a novel 
metabolomics application.  

 We survey the related work in Section II. In Section III, 
we introduce our data fusion model and the algorithmic 
approach. Section IV demonstrates the performance of the 
proposed approach on simulated data and real metabolomics 
data. Section V concludes with future research directions. 

II. RELATED WORK 

Data fusion within the context of joint factorization of 
matrices has been studied for years [2, 5, 12]. The problem is 
typically formulated as:   

 2 2T T(U,V, W) X UV Y UWf = − + −   (1) 

where X I J×∈ and Y I K×∈  are matrices coupled in the  
first mode and the factor matrix corresponding to the shared 
mode, U I R×∈ , is common in both factorizations. 
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As an extension of (1), joint factorization of 
heterogeneous data, e.g., a third-order tensor, I J K× ×∈X , 
coupled with a matrix, Y I M×∈ , can be formulated as:  

   
 

22 T
1(A,B,C,V) A, B, C Y AVf = − + −X          (2) 

where tensor X  and matrix Y are simultaneously 
factorized through the minimization of (2), which fits a 
CANDECOMP/PARAFAC (CP) [13, 14] model to X  and  
factorizes Y in such a way that the factor matrix 
corresponding the common mode, i.e., A I R×∈ , is the same. 
B J R×∈  and C K R×∈  are the factor matrices of X  
corresponding to the second and third modes, respectively. 
We use the notation 

 
A, B, C=X  to denote the CP model. 

V M R×∈  is the factor matrix that corresponds to the second 
mode of  Y. This formulation of coupled matrix and tensor 
factorization (CMTF) model, dating back to the studies of 
Harshman and Lundy [15] and Smilde et al. [6], has recently 
been a topic of interest in many studies [3, 8, 9, 16, 17]. 

III. OUR APPROACH 

A.  Model 
The formulation in (2) makes an implicit assumption that 

all columns of factor matrix A, i.e., ar for r=1,...R, are shared 
by the matrix and the tensor. However, in general, there are 
both common and individual factors in coupled data sets. 
Therefore, we reformulate the problem in such a way that 
through modeling constraints, we identify the common and 
individual components in CMTF. We modify f1 and rewrite 
the optimization problem as follows: 

 

2
22 T
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 where 1λ R×∈  and 1σ R×∈  correspond to the weights of 
rank-one components in the third-order tensor and the 
matrix, respectively. R R×Σ ∈  is a diagonal matrix with 
entries of σ  on the diagonal. ||.|| denotes the Frobenius norm 
for higher-order tensors/matrices and the 2-norm for vectors 

while ||.||1 denotes the 1-norm of a vector, i.e., 
1

1

x | |
R

r
r
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= ∑ . 

0β ≥  is a penalty parameter. In this formulation, our goal 
is to sparsify the weights λ  and σ  using the 1-norm 
penalties so that unshared components have norms equal to 
or close to 0 in one of the data sets. 

 In order to solve this constrained optimization problem, 
we first convert it into a differentiable unconstrained 
optimization problem and then use a first-order optimization 
algorithm. Using the quadratic penalty method [18], we 
convert the constraints into penalty terms. In order to make 
the objective function differentiable, we also replace the 1- 
norm terms with differentiable approximations, e.g., for  

sufficiently small 20, i ix xε ε> + =  [19]. Our objective             

 

Figure 1.  A third-order tensor coupled with a matrix. 

function can be finally formulated as follows, for 0α ≥ : 
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B.  Algorithm 
  We minimize the objective function f3 in (3) using a 
gradient-based optimization approach [18]. The gradient can 
be computed by taking the partial derivates of f3 with respect 
to the factor matrices and the vectors λ  and σ . The gradient 

3f∇  of length R(I+J+K+M+2) can then be formed by 
vectorizing the partials with respect to the factor matrices 
and concatenating them with the partials with respect to 
vectors λ  and σ , as follows: 

 T
T T T T T T3 3 3 3 3 3

3 vec( )    vec( )    vec( )    vec( )    ( )    ( )
A B C V λ σ
f f f f f ff ∂ ∂ ∂ ∂ ∂ ∂ ∇ =  ∂ ∂ ∂ ∂ ∂ ∂ 

  

    Let 
 

λ; A, B, C=T  and TZ A V .= Σ  Assuming that 
each term in f3 is multiplied by 0.5 for the ease of 
computation,  the partial derivatives  can be computed as: 

3
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T X

 

where 
( )X n

 denotes tensor X  unfolded in the nth mode; 

n×  denotes the tensor-vector product in the nth mode, and 
  denotes the Khatri-Rao product (See [20, 21] for details). 
A  corresponds to A with columns divided by their 2-norm.  

Once the gradient is computed, to minimize the objective 
in (3), we use the Nonlinear Conjugate Gradient method 
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[18] with the Moré-Thuente line search as implemented in 
the Poblano Toolbox [22]. Function and gradient 
computations are available with the CMTF Toolbox [23]. 

IV. EXPERIMENTS AND RESULTS 

In this section, we first show the benefits of formulating 
coupled matrix and tensor factorization as in (3) using 
simulated data. Then we demonstrate the usefulness of the 
proposed approach in a novel metabolomics application. 

A.  Simulated Data 
 We generate factor matrices A , B , CI R J R K R× × ×∈ ∈ ∈  

 
and V M R×∈  with entries drawn from the standard normal. 
The columns of factor matrices are normalized to unit norm. 
Here, we set I=50, J=30, K=40, M=20 and R=3. The factor 
matrices are then used to construct a third-order tensor 

 
λ; A, B, C=X  coupled with matrix TY=A VΣ , where λ    

and diagonal entries of diagonal matrix Σ , i.e., σ , of length 
R, correspond to the weights of rank-one tensors and 
matrices, respectively. Small amount of noise is added to 
each data set. Using different sets of weights, we generate 
cases where R components are shared differently among 
data sets: (i) Case 1: One common and one individual 
component in each data set, i.e., Tλ=[1 0 1] , Tσ=[1 1 0] .  (ii) 
Case 2: One individual component in the matrix, i.e., 

Tλ=[1 1 0] , Tσ=[1 1 1] .  (iii) Case 3: One individual 

component in the tensor, i.e., Tλ=[1 1 1] , Tσ=[1 1 0] .  

 Coupled data sets are then jointly factorized using the 
traditional CMTF model in (2) and our proposed approach in 
(3) (referred to as ACMTF). We use 0.001β =  and 1α = in 
our experiments. Figure 2 and 3 demonstrate the weights 
( λ, σ ) estimated using both models for 100 runs returning 
the same function value (Multiple random starts are used and 
the minimum function value is obtained 100 times). When we 
use CMTF, weights are estimated by normalizing the 
columns of the extracted factor matrices. In Figure 2(a), we 
expect to recover Tλ=[1 0 1] , Tσ=[1 1 0] ; however, we 
observe that weights captured by CMTF widely vary hiding 
the true underlying structure of the data sets. On the other 
hand, ACMTF reveals the exact structure indicating that 
there is one common and one individual component in each 
data set. Similarly, in Figure 2(b), we expect to see three non-
zero weights for the matrix and two non-zero weights for the 
tensor. However, there is too much variation for the same 
function value hiding the true structure of the data sets. 
ACMTF, on the other hand, can identify common and 
individual components accurately. Unlike Case 1 and 2, 
CMTF performs well for Case 3, where the tensor has all 
three  components and two of them are shared with the 
matrix (Figure 3). This is as a result of the uniqueness 
properties of the CP model [20, 21]. Numerical experiments 
demonstrate that building a model by taking into account  
individual components as well as common components can 
be beneficial in terms of capturing the true underlying 
structures. 

 
                  (a) Case 1                  (b) Case 2 

Figure 2.  Weights estimated by CMTF and ACMTF. 

 
Figure 3.  Weights estimated by CMTF for Case 3. 

B.  Metabolomics Data: 
 Next, we use the proposed data fusion model to jointly 
analyze metabolomics data sets. The data consists of human 
plasma samples, which are part of a study conducted on 
patients undergoing large bowel endoscopy due to 
symptoms which could be associated to colorectal cancer 
(CRC) [24]. In this paper, we use the samples from verified 
CRC group (group 1) and the group with other 
nonmalignant findings (group 2). We have 55 and 64 
samples in group 1 and group 2, respectively. These samples 
are measured using both fluorescence and NMR 
spectroscopy. Fluorescence measurements are represented as 
a third-order tensor with modes: samples, emission and 
excitation wavelengths (Figure 1). We have used the 
undiluted samples measured in the spectral region of 
emission wavelengths 300nm to 600nm and excitation 
wavelengths 250nm to 450nm. For the same samples, 1H-
NMR spectra have also been collected and the data has been 
preprocessed by identifying the peaks as described in [24]. 
NMR measurements can be represented as a samples by 
peaks (chemical shifts) matrix. In summary, we have a third-
order tensor of size 119 301 41× × coupled with a matrix of 
size 119 455× (Figure 1). Based on the prior chemical 
knowledge, Beer's law suggests that the fluorescence data 
will follow a CP model. This makes the CMTF model 
adequate for modeling these coupled data sets. 

 After centering both data sets across the sample mode and 
scaling the peaks in NMR with their standard deviation, we 
jointly factorize the matrix and the tensor by extracting the 
same factor matrix from the sample mode using the model in 
(3). We set 0.001β =  and 1α = . The 8-component model 
reveals the following weights: λ =[0.82, 0.72, 0.30, 0.39, 
0.10, 0.06, 0.09, 0.00] and σ =[0.14, 0.20, 0.35, 0.14, 0.42, 
0.59, 0.46, 0.39] indicating that, out of 8 components, 7 of 
them are common while the last component is only available 
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in NMR. Among the common components, first and fifth 
components play a role in the separation of CRC samples 
from the control group (Figure 4(a)). When samples are 
clustered using k-means into two clusters based on a1 and 
a5, we achieve 71.4% accuracy (with 63.6 % sensitivity, 
78.1% specificity) in terms of separation of CRC samples. 
Figure 4(b) illustrates the factor vectors corresponding to the 
emission and excitation modes as well as the NMR peaks, 
which are mainly responsible for the separation in Figure 
4(a). The factor vectors extracted from the fluorescence data 
with excitation and emission maximum at 340nm/460nm, 
respectively, can be assigned to NAD(P)H. Increased levels 
of NAD(P)H have also previously been associated with 
cancer, as it is one of the factors affected by the altered 
metabolic functions in cancer cells compared to healthy cells 
[25]. Further research is needed for identification of the 
chemicals represented by the factor vector corresponding to 
the NMR peaks. When we explore the eighth component 
that is only available in NMR, we observe that it can be 
related to gender separation. When samples are clustered 
based on a8 into two clusters, we can separate females and 
males with 63.0% accuracy (There are almost equal number 
of males and females, i.e., 58 vs. 61). While these findings 
need to be further validated biologically, this example 
illustrates that the proposed model is useful in terms of 
capturing common and individual components in data fusion 
studies. 

 
     (a) Scatter plot of a1 vs. a5               (b) Plot of b5, c5 and v5. 

Figure 4.  Factors separating the group of CRC samples from the control 
group captured by the data fusion model in (3). 

V. CONCLUSION 

 In this paper, we have introduced a structure-revealing 
data fusion model that can identify common and individual 
factors across multiple data sets in the form of matrices and 
higher-order tensors. Numerical experiments demonstrate 
the benefit of modeling common and individual components 
by incorporating sparsity penalties on component weights. 
We have also demonstrated the applicability of the proposed 
model on a novel metabolomics application. We plan to 
study its sensitivity to penalty parameters and better 
understand its uniqueness properties. Furthermore,  
extension of the proposed idea for identification of common 
and individual components to joint factorization of data sets 
with different noise models as well as alternative 
optimization approaches are future topics of interest. 
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