
  

 

Abstract—Here we present a method for classifying fMRI 

independent components (ICs) by using an optimized algorithm 

for the individuation of noisy signals from sources of interest. 

The method was applied to estimate brain activations from 

combined EEG‐fMRI data for the exploration of epilepsy. 

Spatial ICA was performed using the above-mentioned 

optimized algorithm and other three popular algorithms. ICs 

were sorted considering the value: of the coefficients of 

determination R2, obtained from the multiple regression 

analysis with morphometric maps of cerebral matter; of the 

kurtosis, which features the signal energy. The validation of the 

method was performed comparing the brain activations 

obtained with those resulted using the General Linear Model 

(GLM). The ICA‐derived activations in different datasets 

comprised subareas of the GLM‐revealed activations, even if 

the volume and the shape of activated areas do not correspond 

exactly. The method proposed also detects additional negative 

regions implicated in a default mode of brain activity, and not 

clearly identified by GLM. Compared with a traditional GLM 

approach, the ICA one provides a flexible way to analyze fMRI 

data that reduces the assumptions placed upon the 

hemodynamic response of the brain and the temporal 

constrains. 

I. INTRODUCTION 

Most existing analytical techniques for functional 
Magnetic Resonance Imaging (fMRI) data need specific 
assumptions about temporal trend of stimulation, as well as 
about hemodynamic profile [1]. These assumptions may be 
characterized by an intrinsic imprecision due the technical 
recordings and an inaccurate hemodynamic modeling. 
Data‐driven analysis, such as Independent Component 
Analysis (ICA) [2], is a well replay for this issue, because of 
the possibility to characterize data without relying on the 
statistical testing of a few stringent hypotheses, and to 
generate potentially valuable information on the nature of 
signal and noise in the fMRI time series [3]. These are the 
main differences with the most commonly used “hypothesis-
driven” methods, like the General Linear Model (GLM) [4], 
that are, instead, based on an apriori model of the impulse 
response of the neurovascular system.  
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Several ICA algorithms are used for biomedical 
applications [5], and they showed different performances 
according to different recorded fMRI dataset. The popular 
FastICA algorithm demonstrated consistent and reliable 
results [6], even if it loses quality performances respect to 
adaptive ICA algorithms when phase information has not 
been discarded by fMRI data recordings [7]. Moreover, 
comparative studies of FastICA performances showed 
advantages and disadvantages [8]. Zarzoso et al. [9] 
proposed an optimization method of deflection mode 
fixed‐point algorithm (RobustICA) for improving the 
performance and accelerating the convergence, using 
kurtosis as functional in the distribution of the separator 
output. Both real- and complex-valued signals are treated 
(non-circular sources), and high convergence speed is 
measured in terms of source extraction quality versus 
number of operations.  

For sorting ICs of interest from non‐ interest ones, 
various approaches were proposed as an alternative to the 
visual inspection: linear correlation of ICs time course with a 
model of the expected responses [2], which appears to 
contrast with the data‐ driven approach; a least squares 
Support Vector Machines (lsSVM) applied by Rodionov et 
al. [10] on a dataset of interictal fMRI in focal epilepsy,  

Here we present a new approach for improving EEG-
fMRI data analysis for epileptic patients. We optimized 
RobustICA algorithm using a normalized-kurtosis for taking 
into account the contribution of noise directly within the cost 
function [11]. No signal pre‐processing step is required, and 
the effect of noise is not more considered. The results 
obtained by the optimized RobustICA algorithm were 
compared with the ones found by other three ICA algorithms 
(fastICA, A-CMN and ICA-EBM). For sorting the ICs 
identifying the significant activated areas, a new method was 
introduced based on the R2 statistic coefficient and the 
kurtosis value, which refer to the spatial and the energy 
contributions of the signal sources, respectively [12]. The 
activated regions shown by the four ICA algorithms were 
compared with GLM-revealed activations, for observing the 
possible differences in the identification of epileptic areas 
with or without the spatial-temporal resolution of EEG 
signals (essential for the GLM approach).  

II. MATERIALS AND METHODS  

A. EEG-fMRI data 

Four patients were selected by whom underwent to a 
Program for Surgery of Epilepsy in the Hospital of West 
Lisbon [13]. A first‐born 2‐year‐old boy referred for 
neurophysiologic evaluation of refractoryepilepsy [14] was 
also added. EEG was continuously recorded with a 37-

Independent Component Analysis of EEG-fMRI data for studying 

epilepsy and epileptic seizures 

Tiziana Franchin, Maria G. Tana, Vittorio Cannatà, Sergio Cerutti, and Anna M. Bianchi 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 6011



  

channel system (Maglink, Neuroscan, Charlotte, NC, USA) 
inside a 1.5 T MR scanner (GE Cvi/NVi, Milwaukee, WI, 
USA). Functional MRI images were acquired with an echo-
planar imaging (EPI) sequence using axial orientation (TE = 
35 ms, 64 × 64 voxels, regular ascending order). For each 
patient, from 4 to 7 runs were acquired. Scanning parameters 
of fMRI acquisition are listed in Table 1. A volumetric T1 
spoiled gradient recovery (SPGR) three-dimensional (3D) 
sequence was also acquired (0.6 mm slice thickness, in-plane 
resolution of 0.94 mm × 0.94 mm).  

TABLE I.  PARAMETERS OF FMRI ACQUISITION  

Patient  TR (s) 
Resolution 

(mm × mm × mm) 

Numbers of volumes 

per run 

A 2.1 4.38 × 4.38 × 5 170 

B 3.12 3.75 × 3.75 × 7 100 

C 2.1 4.38 × 4.38 × 5  170 

D 2.33 3.75 × 3.75 × 5 150 

E 2.275 3.75 × 3.75 × 5 150 

B. Data preprocessing  

The EEG artifacts induced during EPI acquisition were 
removed with the Scan 4.3.3 software (Neuroscan, Charlotte, 
NC, USA) and visually inspected by an experienced 
neurophysiologist.  

The fMRI images were motion corrected, slice-timing 
corrected and spatially smoothed (8 mm × 8 mm × 8 mm full 
width at half maximum Gaussian kernel) by using SPM5 
software package (http://www.fil.ion.ucl.ac.uk/). 

C. Data analysis  

GLM analysis of preprocessed fMRI data was performed 
with SPM5. The time of onset of ictal activity was convolved 
with canonical haemodynamic response function (HRF). 
HRF multivariate first order Taylor expansion in width and 
in time (dispersion and temporal derivative) and F-contrasts 
were used to perform inference on estimates of regression 
coefficients [13]. 

The same preprocessed single-subject fMRI data were 
analyzed using four different ICA algorithms: fastICA pow3, 
optimized RobustICA, A-CMN and ICA-EBM. The analysis 
were performed using custom-made toolboxes developed in 
MATLAB environment (The MathWorks Inc., Natick, MA, 
USA) integrated within the GIFTv1.3i software toolbox 
(http://mialab.mrn.org/software/gift/index.html). The 
significant number of independent components was selected 
using the Cichocki‐ Amari criterion [15]. Initialized 
parameters were set as default: all the ICA steps were run at 
once and back-reconstruction was performed on ICs to 
obtain results for individual subjects [16]. 

D. Description of the sorting approach  

ICs were sorted using spatial regression coefficients 
(spatial sorting), and then measuring the kurtosis value of the 
ICs which are not excluded by the previous spatial sorting. 

For each separated component, the R2 statistic [17] was 
calculated for estimating the correlation of the independent 
sources with the spatial template of grey and white matter of 
the subjects. The cerebral spinal fluid map was not 
considered because of the unreliability of the a-priori 
template [18]. This first spatial sorting is important to 

discard every sort of contribution it could be misleading to 
the realistic identification of activated areas. The criterion of 
selecting significant components was to choose those with a 
R2 value ≥ 0.7xR2 maximum value of all the spatial ICs [3]: 
threshold was imposed considering literature values [19]. 
Every IC which shows a R2 value less than the threshold 
value or presents a significant R2 value for more than one 
cerebral matter maps was automatically discarded by the 
classification.  

After selection by spatial sorting, for each remaining ICs, 
the kurtosis values of each single was calculated. The energy 
contributions of the signal sources were then used to further 
sort and select the ICs of interest[12].  

E. Evaluation of the fMRI activated regions  

Spatial ICA maps were thresholded applying a Z‐ score 
statistics: a Z value of 1.5 was used in correspondence with 
the threshold with the threshold of p<0.05 for the false 
discovery rate control [21]. 

Spatial activation maps obtained by GLM and ICA 
analysis were compared with anatomical masks drawn by the 
MNI brain atlas [22], for the individuation of specific 
volumes of interest in each hemisphere.  

III. RESULTS 

A.  Time performance 
To quantify the computational cost, we performed 10 

ICA estimations for each algorithm and for each patient 
(Tab. II). No comparison was implemented with GLM 
approach, because of the impossibility of leveling SPM 
procedure (above all, the statistical analysis) with ICA one. 

TABLE II.  TIME COMPUTATIONAL PERFORMANCE FOR EACH PATIENT 

USING DIFFERENT ICA ALGORITHMS  

Algorithm 

Average computational time across 10 runs (s) 

Patient 

A 
Patient 

B 
Patient 

C 
Patient 

D 
Patient 

E 

A-CMN 311.46 156.38 337.26 72.40 74.55 

ICA-EBM 20.71 22.51 44.76 17.53 18.12 

fastICA 

pow3 

5.99 6.51 8.91 6.44 6.78 

optimized 

RobustICA 

5.98 6.09 10.22 5.49 5.99 

B. Comparison of SPM and ICA results 

For each patient and each algorithm, Table III lists the 
selected spatial ICs. The R2 coefficient and kurtosis values, 
together with the labeled activated areas are shown for each 
selected ICs. The outcome of the comparison between ICs 
and GLM maps are also listed.. 

TABLE III.  LIST OF ICS AND ACTIVATED AREAS 

Patient  Algor. R2, k Regionsa GLMb 

A fastICA 

1.0, 

18.9 
FL, OTA, CER y,y,y 

0.9, 

16.6 
FP y,n 

0.7, 

17.0 
HG, PHPPG, FP y,y,y 

0.7, 

10.2 
FP Y 

6012



  

 

Patient  Algor. R2, k Regionsa GLMb 

opt. 

Rob. 

1.0, 

15.0 
THA, PHPPG, FP y,y,y 

0.9, 

49.8 
FP, OTA y,y 

0.7, 

12.2 
FP, OL, CER y,y,y 

0.7, 8.0 FP y 

A-CMN 

1.0, 7.7 FP y 

0.7, 

28.9 
FP y 

0.7, 6.5 CER, OTA y,y 

0.7, 

17.3 
THA, PHPPG y,y 

I-EBM 

1.0, 7.7 FP y 

0.8, 7.3 THA, PHPPG, OTA, CBL y,y,y 

0.7, 

13.2 
THA, PHPPG y 

B 

fastICA 

1.0, 

19.7 
OL, OFG y, y 

0.8, 

27.3 
AG, CER y, y 

0.7, 4.1 OL, CER y, y 

opt. 

Rob. 

1.0, 5.7 OL y 

0.8, 8.1 SCS, OFG, CER y, y,y 

0.8, 5.7 OL, CER y, y 

0.7, 7.3 AG y 

0.7, 4.9 OL, CER y, y 

A-CMN 

1.0, 9.7 OL, SCS, OFG y, y 
0.9, 

31.3 
OL, CER y, y 

0.9,14.1 OL, AG y, y 

I-EBM 

1.0, 9.2 OL, SCS y, y 

0.8,7.1 OFG y 

0.3, 9.1 OL, AG, CER, y, y,y 

0.7, 6.7 OL, CER y, y 

C 

fastICA 

1.0, 

11.0 
CER, OL, PL y,y,y 0.9, 

15.2 

0.8, 3.1 

opt. 

Rob. 

1.0, 

10.0 

CER, OL, PL y,y,y 

0.9, 5.2 

0.8, 

17.1 

1.0, 6.8 

0.9, 8.3 

0.8, 8.5 

A-CMN 
1.0, 5.4 

CER, OL, PL y,y,y 0.9, 7.2 

0.8, 5.1 

I-EBM 

1.0, 

13.4 

CER, OL, PL y,y,y 
0.9, 

15.2 

0.9, 6.1 

0.8, 9.2 

D 

fastICA 

1.0, 5.4 

FL, PL, TL y,y,y 
0.9, 

11.5 

0.9, 8.3 

opt. 

Rob. 

1.0, 

15.6 
FL, PL, TL y,y,y 

0.7, 

11.0 

A-CMN 

1.0, 9.8 

FL, PL, TL y,y,y 
0.9, 5.2 

0.9, 

11.1 

I-EBM 
1.0, 

15.7 FL, PL, TL y,y,y 
0.9, 7.5 

E fastICA 

1.0, 

17.7 
OL, CER y,y 

 0.9, 8.3 HYP, HPP y,y 

Patient  Algor. R2, k Regionsa GLMb 

0.8, 

11.2 

ACG, 

DLFL 
y,y 

opt. 

Rob. 

0.9, 

56.1 
OL Y 

0.8, 

49.2 
CER Y 

0.8, 6.2 HYP, HPP y,y 
0.7, 

29.3 
ACG, DLFL y,y 

A-CMN 

1.0, 

19.2 
OL, CER y, y 

0.8, 6.9 HYP, HPP y,y 

0.7, 9.3 ACG, DLFL y,y 

I-EBM 

1.0, 

20.7 

HYP, HPP 

ACG,  
y,y,y 

0.8, 4.3 DLFL, OL, CER y,y,y 

AG: angular gyrus; ACG: anterior cingulate gyrus; CBL: cerebellum; 

DLFL: dorso-lateral frontal lobe; FL: frontal lobe; FP: frontal pole; HEG: 

Heschl’s gyrus; HPP: hippocampus; HYP: hypothalamus; OFG: occipital 

fusiform gyrus; OL: occipital lobe; OTA: occipital-temporal areas; PHPPG: 

parahyppocampal Gyrus; SCS: supra calcarine sulcus; TA: temporal areas; 

THA: thalamus; TP: temporal pole correspondence between the activated 

areas of interest obtained using ICA and GLM (y:yes;n: no) 

Figure 1 shows clearly the differences between GLM 
analysis (upper row) and spatial ICs (lower row) obtained by 
optimized RobustICA.  

For each patient, the number of voxels was estimated for 
each components and in the SPM maps that overlap with the 
corresponding masks, used for individuating the regions of 
interest. have very similar number of voxels coinciding with 
the masks. Respect to the SPM activation maps, for patient A 
to D, the average increase of the number of voxels estimated 
by ICA algorithms is of 50%, 50%, 89%, and 92% for 
fastICA, optimized RobustICA, A-CMN and ICA-EBM, 
respectively. 

 

Figure 1.  GLM and ICs maps of the patient E. Positive (red) and negative 

(blue) activations are displayed. The first row shows activated areas 

obtained using GLM [14]. The second raw shows activated areas of interest 

obtained using optimized RobustICA. 

IV. DISCUSSIONS  

In this study we illustrated a comparisons of ICA 
algorithm performance in analyzing epileptic EEG-fMRI 
data. Four ICA algorithms were studied, showing differences 
in time consuming and quality performance in identifying 

6013



  

activated areas. The median CPU time required to run 
fastICA and optimized RobustICA are equal, and about a 
third and a twenties of the time employed by ICA-EBM and 
A-CMN algorithms, respectively.  

An ICA approach for sorting fMRI independent 
components of interest was also proposed. Differently from 
conventional univariate statistical analyses and other ICA 
sorting approaches, spatial IC maps are classified by means 
of the only intrinsic structure of the data. The spatial 
contribution (R2) in ICs sorting consents to distinguish 
activation areas (related to vascular structure of the grey 
matter) from distracters ones (associated to white matter). 
For improving the classification, kurtosis value of IC maps is 
used for characterizing energetic features of the signal and 
then anatomical parcellation was implemented using pre-
existing anatomical maps. Differently from other patients, 
the BOLD response associated with ictal events in gelastic 
epilepsy (patient E) is widespread in GLM‐ results respect to 
ICA ones, even if a considerable concurrence of activated 
areas exists. Increased BOLD signals were in the left HYP, 
HPP, OL, ACG and dorsal–lateral FL at seizure onset. 
Hypothalamic hamartomas (HHs) have been demonstrated as 
the cause of gelastic epilepsy and the neocortex becomes 
secondarily involved, through poorly characterized 
propagation pathways [15]. 

An important result is that ICA did not miss any 
GLM‐ revealed activation areas. Similar but still 
distinguishable activation patterns were obtainable with both 
methods. Except for the patient E, the activations appeared 
spatially more extended when analyzed with the ICA than 
with the corresponding GLM, both in group and single‐ case 
analysis. The majority of voxels missed by GLM method can 
be due to the specific choice of threshold suggesting that 
their temporal trends analyzed with GLM correlated poorly 
with the task timing [23]. This can explain why the 
inferential GLM method failed to identify specific areas. 
Therefore as a complementary method to GLM, ICA can be 
used to detect activations where the hemodynamic response 
differs from the model. 

The last consideration about ICA is the possibility of 
single independent component of individuating specific 
activated areas, differently by GLM method in which 
particular software are needed to provide regions of interest 
(ROIs) analysis and to extract time courses from them [24]. 
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