

Abstract—Brain decoding would be a replacement for some

nerve injured patients to communicate motor functions with a

prosthesis device. Decoding algorithms translate ensemble of

firing rates to the intended function. Firing rates for each

individual neuron are obtained from labeling the detected

spikes. This labeling process -also known as spike sorting-

could be done from the range of fully automated to a heavily

operator dependent manners. On the other hand we could use

merits of both automation and operator's watch in a semi-

supervised approach. In this study we explored the application

of a self-training SVM classifier algorithm to label spikes with

a small training dataset. Result shows the proved

monotonically increasing convergence and consequently the

ability of this algorithm to significantly reduce the operator's

effort for continuous supervision. It provides in addition a

significant improvement with respect to the previously used

SVMs.

Index Terms—Firing rate, neural decoding, spike sorting,

self-training SVM

I. INTRODUCTION

HE brain is the most complex organ in the human body.

Several approaches proposed to explore its functioning

like EEG, MEG, fMRI and extracellular recording. In the

expense of invasiveness, extracellular recording has the

highest resolution among them in order of a single neuron

[1]. Extracellular recording data usually has being recorded

in an intracellular space with 10 to 100 neurons surrounding

by an array of electrodes. Therefore each electrode records a

superposition of spikes originated from nearby neurons [2].

Spike is a deformed version of an internal action potential

recorded from its outside. It is needed to separate the

activity of each neuron by assigning its corresponding

spikes which is also called spike sorting. The output of the

sorting step could be used in decoding through computing

firing rates.

Spike sorting as a meddling stage could cause an

exhaustive defect in the decoding if it is done inaccurately.

This process could be done in a supervised, unsupervised or

a semi-supervised manner. Supervised algorithms need

labeled data which is done by an operator and this kind of

labeling is almost impossible for a long time recording

period. Some unsupervised algorithms such as those based

on wavelet packets were proposed in [3]. But these

unsupervised algorithms are designed to satisfy the real-time

implementation and they are not recommended for testing a

decoding algorithm. Testing a decoding algorithm needs a

high accuracy spike sorting even it is done offline.

On the other hand semi-supervised methods use an

operator to check or initiate the sorting algorithm. These

“learning” approaches have different level of complexity

based on the operator’s dependence. Operator’s contribution

in the semi-supervised approaches could be in the selecting

the number of clusters but also in assigning a small number

of waveform to each cluster. In this study we proposed an

approach to reduce the operator’s effort and also gain a

highest possible accuracy based on the knowledge that the

operator gave us at the initial point in an offline processing

manner.

The rest of paper is organized as follows. Section II gives

a brief mathematical view of a standard SVM and the self-

training semi-supervised algorithm. It also contains a

mathematical description of our model selection approach.

The results are exposed in section III and finally a brief

discussion is given in IV.

II. METHODS

Spike sorting is the task of assigning each waveform of

detected spikes to the neuron it is originated from. This task

is usually done by clustering. In this approach each spike

waveform is represented as a vector in the feature space. By

the assumption of waveform consistency during the

extracellular recording process and well-chosen features it is

possible to assign each waveform to its neuron.

In recent years several classifiers have been employed in

spike sorting. Among them SVM has been modified several

times to be used in this context because of its generalization

power [4][5]. In addition Ding et al. [5] showed the ability

of a multi-class clustering done by SVM to overcome the

problem of superposed spikes. In their proposed method,

they ignored the spikes that were not classified in their one-

against-all approach.

A standard SVM originally is designed for two-class

Neural spike sorting with a self-training semi-

supervised support vector machine

Abdollah Ghanbari
1
,

Mohammad B. Shamsollahi

1
, Vincent Vigneron

2
, Abdessalam Kifouche

2, 3

1
Biomedical Image and Signal Processing Laboratory (BiSIPL), Department of Electrical Engineering

Sharif University of Technology, Tehran, Iran
2
University of Evry Val d’Esson, Evry, France

3
Université Saad Dahlab Blida, Tunisia

ghanbari@ee.sharif.edu, mbshams@sharif.edu, vincent.vigneron@ibisc.univ-evry.fr

T

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 6007

classification problems. In a spike sorting study we usually

counter with a mixture of neurons in each channel. One-

against-all or one-against-one could be employed to expand

a standard two-class SVM to a multi-class case. In [5] it is

shown that one-against-all technique has a superiority over

the others. In this paper we modified the self-training semi-

supervised algorithm proposed by [6] and applied it to a

spike sorting task using one-against-all technique.

A. Self-training Semi-supervised Algorithm

Objective function of a two-class standard C-SVM is

defined as follow:

B(� , ¿) =
1

2
 !�!6 + %Í æÜ

Ç

Ü@4

where we aim to find the normal vector of the separating

hyperplane, �, y-intercept, >, and æÜ which measures the

misclassification rate to minimize the objective function

subject to:

UÜ(�
X g + >) R 1F æÜ

æÜ R 0 E = 1,2, … ,0

where TÜ Ð 9
ß is a feature vector from the training set,

UÜ Ð {1 ,F1} is the label of corresponding samples and C is

the penalty parameter. In a standard C-SVM, C is a constant

value during the minimization process, later we will discuss

how we will choose this constant value in each iteration.

A self-training semi-supervised algorithm uses this C-

SVM classifier. Suppose that (Â is a small training set that

contains 0Â sample { Ü , E = 1,2, … ,0Â} which have been

labeled by an operator [U(4)(1), … ,U(4)(0Â)], and a test set

(Í containing 0Í samples { Çº>Ü , E = 1,2, … ,0Í} with

unknown labels. The steps of the self-training semi-

supervised C-SVM algorithm are as follows:

x In the first step we train a standard SVM with the

labeled data and use the designed classifier to label

the test set (Í. The parameters of the SVM classifier

are denoted �(4) Ð 9ß , Ý(4) Ð 9Çº and >(4) Ð 9, the

predicted labels are [U(4)(0Â + 1), … ,U(4)(0Â +

0Í)]. The upper subscript denotes the iteration

number.

x The Second step is a loop. In each iteration, k, we

define a new training set (Ç = (Â + (Í, with the

labels predicted earlier,

[U(Þ?5)(0Â + 1), … ,U(Þ?5)(0Â + 0Í)]. Then by this

augmented training set, we train a SVM and perform

a new classification on (Í. We do this step for all C

values in a pre-defined subset and find the optimal C

as it is described later on model selection. For this

optimum C value, the parameters of the SVM are

denoted as �(i) Ð 9ß , Ý(Þ) Ð 9Çº>ÇÅ and >(Þ) Ð 9.

We next apply this classifier to the data and update

the labels of the test set [U(Þ)(0Â + 1), … ,U(Þ)(0Â +

0Í)]. Train set labels will remain the same in each

iteration. Finally in this step we calculate the

objective function by obtained parameters in each

iteration:

Bk�(i) , È(Þ)o =
1

2
 .�(i).

6
+ % Í æÜ

(Þ)

Çº>ÇÅ

Ü@4

x In the third step we check the termination criteria by

calculating the absolute value of the two consecutive

iterations and the algorithm will be stopped if this

criteria is less than a predefined positive value:

+Bk�(i) , È(Þ)o F Bk�(i?5) , È(Þ?5)o+ < Ü4

where Ü4 is the least change we expect from our

objective function. This also means that the

algorithm reaches its local minimum.

The convergence of the original algorithm has been

theoretically proved in [6]. This convergence can be

observed in our result. Another modification of this

algorithm has been proposed by [7] which enters the

scattering matrix into the SVM’s objective function and

claimed a better result.

B. Model Selection

In the algorithm described in the previous subsection we

should set the penalty parameter C of SVM through model

selection. In [6] it was suggested to use an one-dimensional

Fisher ratio and it was not mentioned how we can employ it

to a high-dimensional space. Here we used a robust Fisher

ratio which can be used in our high-dimensional feature

space. It is also common to use cross-validation on training

data set and search in a specific range for C to find the best

possible C which gives us the maximum accuracy in our

training set. Here because our training set is so small we

could not rely on these results. In [7] cross-validation has

been used in self-training semi-supervised algorithm

however it was prohibited in [6].

Now we search in a finite set of C values in a pre-defined

subset {%5, … ,%Å} and simultaneously calculate the Fisher

discriminant ratio:

FDR(G,%Ü) =
�Í(Æ5 F Æ6)(Æ5 F Æ6)Í�

�Í(±5 + ±6)�

where Æ and ± denote the mean and covariance of each class

respectivly, and � is a discriminant vector. The lower

 (a) (b)

Fig. 1. (a) Overall view of the spikes and (b) the corresponding

templates

6008

subscript denotes the class label. A � that gives the

maximum discriminant is [8]:

� = (±5 + ±6)?5(Æ5 F Æ6)

After computing Fisher ratio for all %ß we define % as:

%âãç
(Þ)

= max
¼Ô

 FDR(G,%Ü)

where %âãç
(Þ)

 is the penalty parameter applied to augmented

training set in the kth iteration in the second step of the

algorithm.

 This model selection method is based on the fact that the

original Fisher ratio represents the reparability of the

clusters, i.e., the Fisher ratio increase implies high

reparability. Therefore in each iteration we choose a % that

gives us a higher discrimination.

III. DATASET & RESULTS

A. Dataset

The data came from a 30’ multiunit recording from a

human epileptic patient. This data was collected at the lab of

Itzhak Fried at UCLA, using a Neuralynx system (Tucson,

Arizona). The spikes have been detected and also clustered

using Waveclus toolbox by University of Lecister and this

clustering has been accepted as our ground truth [9]. The

cluster membership number for spikes also contains some

zero values which were considered as spikes and were not

assigned to any cluster by the Waveclus contributors. An

overall view of the detected spikes is represented by a 64

sample point and their corresponding templates are plotted

on Fig. 1. These templates are calculated by averaging of the

spikes in the same class. The template with the lowest peak

corresponds to the non-clustered spikes.

B. Results

Since we had a multiclass problem in spike sorting in one

hand and a two-class classifier on the other hand we had to

choose between one-against-one, one-against-all and

Directed Acyclic Graph SVM [10]. In [5] Ding et al.

claimed one-against-all showed a better performance in

neural activity gathered by micro-electrode arrays.

Accordingly we employed this approach by combining three

binary classifiers. We could have considered the unlabeled

data as a separate class but we ignored it in our results.

 To do the clustering we need to extract features from our

spike waveforms and project each spike to the feature space.

Here we used Principal Component Analysis (PCA) and

project the spike signal to an orthogonal space as the first

component have the biggest projection of the signal. The

succeeding components is also have the most value under

the constraint that it be orthogonal the preceding

components. The original spikes were sampled in 64

points, so we selected the first 25 components of PCA and

used it as our features [1], [2]. These 25 components contain

almost 90 percent of the spike’s energy. To apply the

algorithm to the dataset here we chose 20 labeled samples as

our training set, (Â. For the test set, (Í, we used 980 spikes

to role in the iterative scheme in the second step. Choosing

all the 10,000 remained spikes in our 30’ data set although

could improve the accuracy but it causes a severe

computational burden. To implement the standard SVM in

the algorithm we used LIBSVM [11].

 Fig. 2a illustrates the accuracy rate of the algorithm in

each iteration. The result is the mean value for 100 run of

the algorithm with random permutation of training and test

sets. It can be seen form the curves that the algorithm

converges in 10 iterations. Fig. 2b demonstrates the

monotonic increase of the Fisher discriminant ratio. The

accuracy rate which we obtained here is relative to the

Waveclus classification. Therefore if we assume the

classification done by Waveclus is correct, which is not, we

showed that we reached a better classification in each

iteration. For better comparison of the method we should

use an intracellular recording along with the extracellular

recording for all the neurons located nearby the recording

area. In that case we have the actual ground truth and as it is

shown here the algorithm increase the accuracy and

converge to the actual ground truth by iterating.

 Extracellular recording of neural activity usually suffers

from noise existence. Here to model this noise in the

 (a) (b)

Fig. 2. (a) Accuracy comparison and (b) discriminant measurement of the

simulated spike data.

0 5 10 15
82

82.5

83

83.5

84

84.5

85

85.5

86

86.5

87

A
cc

ur
ac

y
R

at
e

Iteration

0 5 10 15
0.25

0.3

0.35

0.4

0.45

0.5

F
is

he
r

R
at

io

Iteration

With Model Selection

Without Model Selection

Fig. 3. Accuracy measurement of the proposed method and the method

without the model selection in different SNRs.

0 5 10 15 20 25 30 35 40
68

70

72

74

76

78

80

82

84

86

Signal to Noise Ratio

A
c
c
u
ra

c
y

SVM With Model Selection

SVM Without Model Selection

6009

recording we assumed it doesn’t harm our spike detection

process. So we added different level of noise to our already

detected spikes to have different SNR. Fig. 3 shows that in

our particular spikes with a peak value around 300 ä8 both

SVMs work properly in their ideal situation till the SNR is

less than 20. For noise power bigger than this value the

relative accuracy of the algorithm drops till the random

cluster numbers. This figure shows that the SVM with the

model selection outperforms the other method without

model selection.

IV. DISCUSSION

In this paper, we proposed to use a modified version of a

self-training semi-supervised SVM in spike sorting. Semi-

supervised approaches have the ability to train a classifier

with small amount of training data set. This method reduces

the efforts of human expert to label the whole dataset

manually. Here we search a classifier that gives the

maximum discrimination between classes. This method

showed its superiority on standard SVM approaches in a

small train dataset. It is worth to mention that using the

Waveclus as our ground truth does not mean that we

compare our approach to that method. Here we just wanted

to show that the approach could increase the accuracy of a

standard SVM by iterating through the self-training method

described earlier. The self-training approach with the

proposed model selection showed that it could increase the

accuracy of a standard SVM up to 4 percent compared to the

approach without using this model selection which only

increases the accuracy less than one percent.

ACKNOWLEDGEMENT

The authors would like to thanks to Dr. Emad

Fatemizadeh and also the anonymous reviewers for their

comments.

REFERENCES

[1] S. Gibson, J. W. Judy, and D. Markovi, “Spike Sorting:

The first step in decoding the brain,” no. December

2011, pp. 124–143, 2012.

[2] M. S. Lewicki, “A review of methods for spike sorting:

the detection and classification of neural action

potentials.,” Network (Bristol, England), vol. 9, no. 4,

pp. R53–78, Nov. 1998.

[3] J. C. Letelier and P. P. Weber, “Spike sorting based on

discrete wavelet transform coefficients.,” Journal of

neuroscience methods, vol. 101, no. 2, pp. 93–106, Sep.

2000.

[4] R. Jacob Vogelstein, K. Murari, P. H. Thakur, C. Diehl,

S. Chakrabartty, and G. Cauwenberghs, “Spike sorting

with support vector machines.,” Annual International

Conference of the IEEE Engineering in Medicine and

Biology Society., vol. 1, pp. 546–9, Jan. 2004.

[5] W. Ding and J. Yuan, “Spike sorting based on multi-

class support vector machine with superposition

resolution.,” Medical & biological engineering &

computing, vol. 46, no. 2, pp. 139–45, Feb. 2008.

[6] Y. Li, C. Guan, H. Li, and Z. Chin, “A self-training

semi-supervised SVM algorithm and its application in

an EEG-based brain computer interface speller system,”

Pattern Recognition Letters, vol. 29, no. 9, pp. 1285–

1294, 2008.

[7] Y. Jin, C. Huang, and L. Zhao, “A Semi-Supervised

Learning Algorithm Based on Modified Self-training

SVM,” Journal of Computers, vol. 6, no. 7, pp. 1438–

1443, Jul. 2011.

[8] S. Kim, A. Magnani, and S. Boyd, “Robust fisher

discriminant analysis,” Advances in Neural

Information, vol. 1, 2006.

[9] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul,

“Unsupervised spike detection and sorting with

wavelets and superparamagnetic clustering.,” Neural

computation, vol. 16, no. 8, pp. 1661–87, Aug. 2004.

[10] C. Hsu and C.-J. Lin, “A comparison on methods for

multi-class support vector machines,” IEEE

transactions on neural networks / a publication of the

IEEE Neural Networks Council, pp. 415–425, 2002.

[11] &��&KDQJ�DQG�&��/LQ��³/,%690×��$�/LEUDU\�IRU�6XSSRUW�

Vector Machines,” pp. 1–39, 2001.

6010

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

