
 

 

Abstract—Brain decoding would be a replacement for some 

nerve injured patients to communicate motor functions with a 

prosthesis device. Decoding algorithms translate ensemble of 

firing rates to the intended function. Firing rates for each 

individual neuron are obtained from labeling the detected 

spikes. This labeling process -also known as spike sorting- 

could be done from the range of fully automated to a heavily 

operator dependent manners. On the other hand we could use 

merits of both automation and operator's watch in a semi-

supervised approach. In this study we explored the application 

of a self-training SVM classifier algorithm to label spikes with 

a small training dataset. Result shows the proved 

monotonically increasing convergence and consequently the 

ability of this algorithm to significantly reduce the operator's 

effort for continuous supervision. It provides in addition a 

significant improvement with respect to the previously used 

SVMs. 

 
Index Terms—Firing rate, neural decoding, spike sorting, 

self-training SVM 

I. INTRODUCTION 

HE brain is the most complex organ in the human body. 

Several approaches proposed to explore its functioning 

like EEG, MEG, fMRI and extracellular recording. In the 

expense of invasiveness, extracellular recording has the 

highest resolution among them in order of a single neuron 

[1]. Extracellular recording data usually has being recorded 

in an intracellular space with 10 to 100 neurons surrounding 

by an array of electrodes. Therefore each electrode records a 

superposition of spikes originated from nearby neurons [2]. 

Spike is a deformed version of an internal action potential 

recorded from its outside. It is needed to separate the 

activity of each neuron by assigning its corresponding 

spikes which is also called spike sorting. The output of the 

sorting step could be used in decoding through computing 

firing rates. 

Spike sorting as a meddling stage could cause an 

exhaustive defect in the decoding if it is done inaccurately. 

This process could be done in a supervised, unsupervised or 

a semi-supervised manner. Supervised algorithms need 

labeled data which is done by an operator and this kind of 

labeling is almost impossible for a long time recording 

period. Some unsupervised algorithms such as those based 

on wavelet packets were proposed in [3]. But these 

unsupervised algorithms are designed to satisfy the real-time 

implementation and they are not recommended for testing a 

decoding algorithm. Testing a decoding algorithm needs a 

high accuracy spike sorting even it is done offline. 

On the other hand semi-supervised methods use an 

operator to check or initiate the sorting algorithm. These 

“learning” approaches have different level of complexity 

based on the operator’s dependence. Operator’s contribution 

in the semi-supervised approaches could be in the selecting 

the number of clusters but also in assigning a small number 

of waveform to each cluster. In this study we proposed an 

approach to reduce the operator’s effort and also gain a 

highest possible accuracy based on the knowledge that the 

operator gave us at the initial point in an offline processing 

manner.  

The rest of paper is organized as follows. Section II gives 

a brief mathematical view of a standard SVM and the self-

training semi-supervised algorithm. It also contains a 

mathematical description of our model selection approach. 

The results are exposed in section III and finally a brief 

discussion is given in IV.  

 

II. METHODS 

Spike sorting is the task of assigning each waveform of 

detected spikes to the neuron it is originated from. This task 

is usually done by clustering. In this approach each spike 

waveform is represented as a vector in the feature space. By 

the assumption of waveform consistency during the 

extracellular recording process and well-chosen features it is 

possible to assign each waveform to its neuron. 

In recent years several classifiers have been employed in 

spike sorting. Among them SVM has been modified several 

times to be used in this context because of its generalization 

power [4][5]. In addition Ding et al. [5] showed the ability 

of a multi-class clustering done by SVM to overcome the 

problem of superposed spikes. In their proposed method, 

they ignored the spikes that were not classified in their one-

against-all approach. 

A standard SVM originally is designed for two-class 
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classification problems. In a spike sorting study we usually 

counter with a mixture of neurons in each channel. One-

against-all or one-against-one could be employed to expand 

a standard two-class SVM to a multi-class case. In [5] it is 

shown that one-against-all technique has a superiority over 

the others. In this paper we modified the self-training semi-

supervised algorithm proposed by [6] and applied it to a 

spike sorting task using one-against-all technique. 

 

A. Self-training Semi-supervised Algorithm 

Objective function of a two-class standard C-SVM is 

defined as follow: 
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where we aim to find the normal vector of the separating 

hyperplane, �, y-intercept, >, and æÜ which measures the 

misclassification rate to minimize the objective function 

subject to: 
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where TÜ Ð 9
ß is a feature vector from the training set, 

UÜ Ð {1 ,F1} is the label of corresponding samples and C is 

the penalty parameter. In a standard C-SVM, C is a constant 

value during the minimization process, later we will discuss 

how we will choose this constant value in each iteration. 

A self-training semi-supervised algorithm uses this C-

SVM classifier. Suppose that (Â is a small training set that 

contains 0Â sample { Ü , E = 1,2, … ,0Â} which have been 

labeled by an operator [U(4)(1), … ,U(4)(0Â)], and a test set 

(Í containing 0Í samples { Çº>Ü , E = 1,2, … ,0Í} with 

unknown labels. The steps of the self-training semi-

supervised C-SVM algorithm are as follows: 

x In the first step we train a standard SVM with the 

labeled data and use the designed classifier to label 

the test set (Í. The parameters of the SVM classifier 

are denoted �(4) Ð 9ß , Ý(4) Ð 9Çº and >(4) Ð 9, the 

predicted labels are [U(4)(0Â + 1), … ,U(4)(0Â +

0Í)]. The upper subscript denotes the iteration 

number. 

x The Second step is a loop. In each iteration, k, we 

define a new training set (Ç = (Â + (Í, with the 

labels predicted earlier, 

[U(Þ?5)(0Â + 1), … ,U(Þ?5)(0Â + 0Í)]. Then by this 

augmented training set, we train a SVM and perform 

a new classification on (Í. We do this step for all C 

values in a pre-defined subset and find the optimal C 

as it is described later on model selection. For this 

optimum C value, the parameters of the SVM are 

denoted as �(i) Ð 9ß , Ý(Þ) Ð 9Çº>ÇÅ and >(Þ) Ð 9. 

We next apply this classifier to the data and update 

the labels of the test set [U(Þ)(0Â + 1), … ,U(Þ)(0Â +

0Í)]. Train set labels will remain the same in each 

iteration. Finally in this step we calculate the 

objective function by obtained parameters in each 

iteration: 

Bk�(i) , È(Þ)o =  
1

2
 .�(i).

6
+ % Í æÜ

(Þ)

Çº>ÇÅ

Ü@4

 

x In the third step we check the termination criteria by 

calculating the absolute value of  the two consecutive 

iterations and the algorithm will be stopped if this 

criteria is less than a predefined positive value: 

+Bk�(i) , È(Þ)o F Bk�(i?5) , È(Þ?5)o+ < Ü4 

where Ü4 is the least change we expect from our 

objective function. This also means that the 

algorithm reaches its local minimum. 

The convergence of the original algorithm has been 

theoretically proved in [6]. This convergence can be 

observed in our result. Another modification of this 

algorithm has been proposed by [7] which enters the 

scattering matrix into the SVM’s objective function and 

claimed a better result. 

 

B. Model Selection 

In the algorithm described in the previous subsection we 

should set the penalty parameter C of SVM through model 

selection. In [6] it was suggested to use an one-dimensional 

Fisher ratio and it was not mentioned how we can employ it 

to a high-dimensional space. Here we used a robust Fisher 

ratio which can be used in our high-dimensional feature 

space. It is also common to use cross-validation on training 

data set and search in a specific range for C to find the best 

possible C which gives us the maximum accuracy in our 

training set. Here because our training set is so small we 

could not rely on these results. In [7] cross-validation has 

been used in self-training semi-supervised algorithm 

however it was prohibited in [6]. 

Now we search in a finite set of C values in a pre-defined 

subset {%5, … ,%Å} and simultaneously calculate the Fisher 

discriminant ratio: 

FDR(G,%Ü) =  
�Í(Æ5 F Æ6)(Æ5 F Æ6)Í�

�Í(±5 + ±6)�
 

where Æ and ± denote the mean and covariance of each class 

respectivly, and � is a discriminant vector. The lower 

       (a)            (b) 

Fig. 1.  (a) Overall view of the spikes and (b) the corresponding 

templates 
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subscript denotes the class label. A � that gives the 

maximum discriminant is [8]: 

� = (±5 + ±6)?5(Æ5 F Æ6) 

After computing Fisher ratio for all %ß we define % as: 

%âãç
(Þ)

= max
¼Ô

 FDR(G,%Ü) 

where %âãç
(Þ)

 is the penalty parameter applied to augmented 

training set in the kth iteration in the second step of the 

algorithm. 

 This model selection method is based on the fact that the 

original Fisher ratio represents the reparability of the 

clusters, i.e., the Fisher ratio increase implies high 

reparability. Therefore in each iteration we choose a % that 

gives us a higher discrimination. 

III. DATASET & RESULTS 

A. Dataset 

The data came from a 30’ multiunit recording from a 

human epileptic patient. This data was collected at the lab of 

Itzhak Fried at UCLA, using a Neuralynx system (Tucson, 

Arizona). The spikes have been detected and also clustered 

using Waveclus toolbox by University of Lecister and this 

clustering has been accepted as our ground truth [9]. The 

cluster membership number for spikes also contains some 

zero values which were considered as spikes and were not 

assigned to any cluster by the Waveclus contributors. An 

overall view of the detected spikes is represented by a 64 

sample point and their corresponding templates are plotted 

on Fig. 1. These templates are calculated by averaging of the 

spikes in the same class. The template with the lowest peak 

corresponds to the non-clustered spikes. 

 

B. Results 

Since we had a multiclass problem in spike sorting in one 

hand and a two-class classifier on the other hand we had to 

choose between one-against-one, one-against-all and 

Directed Acyclic Graph SVM [10]. In [5] Ding et al. 

claimed one-against-all  showed a better performance in 

neural activity gathered by micro-electrode arrays. 

Accordingly we employed this approach by combining three 

binary classifiers. We could have considered the unlabeled 

data as a separate class but we ignored it in our results. 

 To do the clustering we need to extract features from our 

spike waveforms and project each spike to the feature space. 

Here we used Principal Component Analysis (PCA) and 

project the spike signal to an orthogonal space as the first 

component have the biggest projection of the signal. The 

succeeding components is also have the most value under 

the constraint that it be orthogonal the preceding 

components.   The original spikes were sampled in 64 

points, so we selected the first 25 components of PCA and 

used it as our features [1], [2]. These 25 components contain 

almost 90 percent of the spike’s energy. To apply the 

algorithm to the dataset here we chose 20 labeled samples as 

our training set, (Â. For the test set, (Í, we used 980 spikes 

to role in the iterative scheme in the second step. Choosing 

all the 10,000 remained spikes in our 30’ data set although 

could improve the accuracy but it causes a severe 

computational burden. To implement the standard SVM in 

the algorithm we used LIBSVM [11]. 

 Fig. 2a illustrates the accuracy rate of the algorithm in 

each iteration. The result is the mean value for 100 run of 

the algorithm with random permutation of training and test 

sets. It can be seen form the curves that the algorithm 

converges in 10 iterations. Fig. 2b demonstrates the 

monotonic increase of the Fisher discriminant ratio. The 

accuracy rate which we obtained here is relative to the 

Waveclus classification. Therefore if we assume the 

classification done by Waveclus is correct, which is not, we 

showed that we reached a better classification in each 

iteration. For better comparison of the method we should 

use an intracellular recording along with the extracellular 

recording for all the neurons located nearby the recording 

area. In that case we have the actual ground truth and as it is 

shown here the algorithm increase the accuracy and 

converge to the actual ground truth by iterating.  

 Extracellular recording of neural activity usually suffers 

from noise existence. Here to model this noise in the 

 
       (a)            (b) 

Fig. 2.  (a) Accuracy comparison and (b) discriminant measurement of the 

simulated spike data. 
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Fig. 3. Accuracy measurement of the proposed method and the method 

without the model selection in different SNRs. 
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recording we assumed it doesn’t harm our spike detection 

process. So we added different level of noise to our already 

detected spikes to have different SNR. Fig. 3 shows that in 

our particular spikes with a peak value around 300 ä8 both 

SVMs work properly in their ideal situation till the SNR is 

less than 20. For noise power bigger than this value the 

relative accuracy of the algorithm drops till the random 

cluster numbers. This figure shows that the SVM with the 

model selection outperforms the other method without 

model selection. 

 

IV. DISCUSSION 

In this paper, we proposed to use a modified version of a 

self-training semi-supervised SVM in spike sorting. Semi-

supervised approaches have the ability to train a classifier 

with small amount of training data set. This method reduces 

the efforts of human expert to label the whole dataset 

manually. Here we search a classifier that gives the 

maximum discrimination between classes. This method 

showed its superiority on standard SVM approaches in a 

small train dataset. It is worth to mention that using the 

Waveclus as our ground truth does not mean that we 

compare our approach to that method. Here we just wanted 

to show that the approach could increase the accuracy of a 

standard SVM by iterating through the self-training method 

described earlier. The self-training approach with the 

proposed model selection showed that it could increase the 

accuracy of a standard SVM up to 4 percent compared to the 

approach without using this model selection which only 

increases the accuracy less than one percent. 
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