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Abstract— Automatic detection and classification of Epilep-
tiform transients is an open and important clinical issue. In
this paper, we test 5 feature sets derived from a group of
morphology-based wavelet features and compare the results
with that of a Guler-suggested feature set. We also implement
a multiple-mother-wavelet strategy and compare performance
with the usual single-mother-wavelet strategy. The results
indicate that both the derived features and the multiple-
mother-wavelet strategy improved classifier performance, using
a variety of performance measures. We assess the statistical
significance of the performance improvement of the new feature
sets/strategy. In most cases, the performance improvement is
either significant or highly significant.

I. INTRODUCTION

The electroencephalogram (EEG) is the most commonly

performed clinical neurophysiology procedure. If epilepti-

form transients are detected in the EEG of a patient who

is having seizure-like events, this suggests that the patient

may be having epileptic seizures [1]. Epileptiform transients

(ETs) are spikes or sharp waves with pointed peak and a du-

ration of 20-70 ms and 70-200 ms, respectively. Sometimes

ETs are followed by a slow wave [2], [3], [4].

Detecting ETs is important, yet difficult, because ETs

have varied morphologies which are similar to some normal

background activities (i.e. wicket spikes, exaggerated alpha

activity, small sharp spikes, and sleep related activities)

and artifacts (i.e. eye blink, eye movement, muscle and

electrode artifacts). Detection of ETs is performed by vi-

sual inspection of EEG signals by electroencephalographers.

EEGs are frequent misinterpreted by neurologists [5] so

the development of automated systems for ET detection is

clinically important.

Many approaches have been proposed for automatic de-

tection and classification of ETs, including template match-

ing, parametric methods, mimetic analysis, power spectral

analysis and wavelet analysis [6]. Many researchers have

demonstrated that the wavelet transform (WT) is a good

feature detection strategy for ETs analysis.

The WT decomposes signals into multiple time/frequency

resolutions. Particular characters, as non-stationary transient

events, can be represented in various scales [7]. There are
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many strategies to extract features after application of the

WT. Appropriate features can characterize particular traits

of ETs and make the classification easier. In addition, the

selection of an appropriate mother wavelet is important. A

classic set of statistical features from wavelet coefficients

using the Daubechies wavelet of order 2 (DB2) is widely

used [8].

This paper extends on previous work [9] where we devel-

oped a group of morphology-based features based on wavelet

coefficients and assembled five feature sets from them. In

this study, we extend the number of feature sets tested,

allow two mother wavelets to cooperate in classification,

and measure whether differences in performance between

different machine learning models are statistically significant.

The classification method is k-nearest neighbor rule (k-NNR)

with k=3 and a normalized distance measure. 10-fold cross-

validation is used. The statistical significance of selected

results are shown.

II. METHODOLOGY

A. Data Acquisition

The EEG data used in this research were 100 30-second

EEG signal segments collected from 100 different patients.

These EEG segments were selected because they contained

difficult to interpret ETs as well as normal EEG events

and artifacts which could be easily confused with ETs. The

EEGs were recorded with a sampling rate at 256 Hz from

21 channels using the standard 10-20 electrode placement

and were high-pass filtered (1 Hz), low-pass filtered (70 Hz)

and notch filtered (60 Hz). 27 digitally-reformatted channels

were selected for analysis: F7-T3, T3-T5, P4-O2, T4-T6,

Fp1-F7, C3-P3, C4-P4, Fp2-F8, F8-T4, Fz-Cz, T5-O1,

P3-O1, Fp1-F3, Cz-Pz, Fp2-F4, T6-O2, Fp2-A2, F4-C4,

F3-C3, A1-avg, Fp1-A1, F7-avg, C3-avg, Fz-avg, T3-avg,

P3-avg, Fp1-avg.

A group of 7 clinical neurophysiologists used a web-based

EEG annotation system to mark small segments containing

all of the paroxysmal events in these EEG segments, then

11 clinical neurophysiologists annotated each event as one

of the following categories:

1) Artifact

2) Abnormal epileptiform

3) Normal electrocortical activity

Further details about how this annotation was performed are

given elsewhere [10]. The 3 categories can be divided into
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Fig. 1. wavelet decomposition tree

TABLE I

Subband Frequency Range

D1 64Hz ∼ 128Hz
D2 32Hz ∼ 64Hz
D3 16Hz ∼ 32Hz
D4 8Hz ∼ 16Hz
A4 0Hz ∼ 8Hz

2 classes: The ’abnormal epileptiform’ is ET class and the

other two belong to non-ET class.

For this study, we used only the results annotated by the

7 neurophysiologists with the best inter-rater correlation. To

derive a single annotation for each event, we considered

the 7 neurophysiologists’ opinions as votes. The category

that received most votes from the 7 neurophysiologists was

regarded as the consensus annotation of that event.

In total, we derived 83 ETs annotations and 2482 non-ETs

annotations. A single feature vector was derived from each

annotation.

B. Discrete Wavelet Transform

We windowed the bipolar montage with a 128-sample (500

ms) rectangular window, whose length is long enough to

include the paroxysmal events. We used a 4-level wavelet

decomposition. The 128-sample segment was decomposed

into 5 subbands (four detail subbands D1-D4 and one ap-

proximation subband A4). Table I shows the corresponding

approximate frequency range of each subband.

In a previous study we found that the Daubechies wavelet

of order 4 (DB4) and order 2 (DB2) mother wavelets are

more useful for ET detection than certain other mother

wavelets (DB 5, DB 20, bior1.3, bior 1.5) which have

been used in ET detection research [9]. Another study has

suggested that the DB4 mother wavelet is particularly useful

for ET detection, since it obtains the highest correlation

coefficients with the epileptic spike signal among the wavelet

bases available in the Matlab toolbox [11]. So for this study,

we have used only wavelet transforms with the DB2 and

DB4 mother wavelet.

One focus of this study is to measure if combining the

mother wavelets DB2 and DB4 in machine learning feature

sets produces better results than using these mother wavelets

alone. We have noticed that sometimes the response of

mother wavelet DB2 to spikes is much larger than that of

DB4 (as shown in Figure 2).
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Fig. 2. Sample EEG Wavelet Decomposition Results Using DB4 and DB2

C. Feature Extraction

Guler suggested a feature set based on statistics over the

WT coefficients (A 4-level decomposition using DB2 in

Guler’s research) [8]. This feature set uses maximum, mini-

mum, mean and standard deviation of the wavelet coefficients

in each subband. Therefore, for a 4-level decomposition (5

subbands), the feature vector dimension is 20.

The derivation of the wavelet-based features is an open

problem, requiring considerable judgment, computational re-

sources and trial-and-error [12]. Following Guler’s methods

and elaborating on them, in this study we have used the

following features in each subband:

• Feature #1: the highest peak of the wavelet coefficients

• Feature #2: the lowest valley of the wavelet coefficients

• Feature #3: the mean of the peaks of the wavelet

coefficients

• Feature #4: the mean of the valleys of the wavelet

coefficients

• Feature #5: the variance of the peaks and the valleys

of the wavelet coefficients

• Feature #6: the variance of the peaks of the wavelet

coefficients

• Feature #7: the variance of the valleys of the wavelet

coefficients

In order to achieve high performance with relatively low

vector dimension, we assembled 5 combinations and their

feature choices and dimensions are shown in Table II. When

a single feature was used for classification, Feature #4

yields the lowest sensitivity and specificity result and Feature

#3 yields the second lowest sensitivity and specificity. To

reduce feature vector dimension with the lowest decrease in

performance, we discarded Feature #4 in Set #4 and then

Feature #3 in Set #5.
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TABLE II

FEATURE CHOICES AND DIMENSIONS OF NEW FEATURE SETS

P
P
P
P
P
P
P
PPSet

Selected
Features #1 #2 #3 #4 #5 #6 #7 DIM

Set #1 × × × × × 25
Set #2 × × × × × × 30
Set #3 × × × × × × × 35
Set #4 × × × × 20
Set #5 × × × 15

D. Employing Multiple Mother Wavelets

In Figure 2, in decompositions D1 and D2, both DB2 and

DB4 present the ET event at corresponding x-coordinates

where the ET occurs in the time domain (starting at x-

coordinate 30 in ’original spike signal’ plot). Observe the

peak value of DB2 is twice of that of DB4; this is an example

of how a feature can be more evident using a WT with

one mother wavelet than another. To improve the classifier

performance, we combined features using both DB4 and

DB2 into one vector for classification. By using this dual

mother wavelet strategy, the vector dimension is doubled.

E. Scalp Location Features

Experts have indicated that the ETs usually occur in

the temporal lobe, suggesting the locations of the scalp

electrodes in which the signal is recorded could be useful

additional features. We employed a 2D-coordinate system

(the 10-20 electrode placement system) and used the X, Y

coordinates of the midpoint of each bipolar pair as spatial

features. Our previous research shows that attaching the 2

spatial features to wavelet feature vectors help improve the

classification performance in some cases [9].

III. RESULTS AND DISCUSSION

A. Feature Set Performance Comparison

To test the classification ability of different features and

different mother wavelets, 18 datasets are built using the 6

feature sets in Section II-C and 3 choices of mother wavelets:

DB2, DB4 and DB4+DB2.

Within EEG recordings, non-ET events occur more fre-

quently than ET events. In our dataset, there are a total of 83

ET feature vectors and 2482 non-ET feature vectors derived

from the annotations and the ratio of ET/non-ET is 1:30. The

annotations indicated that all 100 patients provided non-ET

events while only 31 patients provided ET events. To avoid

prejudice in classification, we chose to balance the training

set (H); we kept the ET/non-ET ratio as 1:30 in test set (ST )

to imitate the unbalanced practical situation.

Within a single trial, 80 ET vectors and 2400 non-ET

vectors were randomly selected from the available data.

We estimated classification performance using k-NNR (k=3)

with 10-fold cross-validation. We chose the non-parametric

classification method, i.e. k-NNR, since it requires no as-

sumptions about the distribution of the data or classifier

parameters. Therefore, the results reflect the properties of the

feature data, not the classifier. Ordinary k-NNR measures the
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Fig. 3. k-NNR (k=3) comparative classification results of new feature sets

Euclidean distance between 2 vectors. In practice, however,

the entry values in one vector could be different by several

orders of magnitude due to the distribution and the range of

the data they represent. To normalize the entry values in a

single vector, we computed the distance as following

d(~v1,~v2) =
√

(~v1−~v2)T Σ−1(~v1−~v2) (1)

where Σ is the diagonal of the covariance matrix of the

randomly selected single-trial dataset. In 10-fold cross-

validation, the available dataset, D, is partitioned into 10

mutually exclusive subsets of equal size by random sampling.

It is trained on D\Dt and tested on Dt with t = 1,2, ...10.

Predicted performance estimates for various measures (sen-

sitivity, specificity, etc.) are thus obtained. 10-fold cross-

validation is a recommended performance prediction method

with less bias and variance [13].

The test performance is assessed by sensitivity and speci-

ficity, defined as:

Sensitivity = TP/(TP + FN), capacity to recognize positive

events;

Specificity = TN/(TN + FP), capacity to recognize negative

activity.

To achieve a single numerical measure of performance

combining sensitivity and specificity, we also measured the

distance between our classifier result and the coordinate (0,1)

in the Receiver Operating Characteristic (ROC) space:

distance =
√

(1− sensitivity)2+(1− speci f icity)2 (2)

In an ideal case with 100% TP and 0% FP, this distance to

(0,1) is 0.

Considering the uncertainty and variation of the random

selection of the data in a single trial, 20 trials were done for
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each feature set/wavelet choice. The average performance of

various feature sets are listed in Figure 3.

B. Statistic Significance of Detection Improvement: One-

Tailed t-Test

To assess statistical significance, a one tailed t-test is

used [14]. We assess whether the mean performance results

from two feature sets are statistically different.

First, we test if the mean of sensitivities/specificities of

a feature set/wavelet combination, is higher than that of

benchmark Guler-suggested feature set/wavelet choice, with

significance levels α (weakly significant: α=0.1; significant

level: α=0.05; highly significant: α=0.01) and 20 observa-

tions. The hypotheses are:

H0 : µg = µ ,

H1 : µg < µ ,

µ (µg) is the mean of the observed performance of a fea-

ture set/wavelet choice (Guler-suggested feature set/wavelet

choice). The standard deviation of the observations in each

set are assumed unequal and unknown. The critical region

to reject H0 is t <−tα .

To test if the distance-to-(0,1) decreased significantly, we

revise the hypotheses:

H0 : µg = µ ,

H1 : µg > µ ,

where µ (µg) is the mean of the observed distance (mean

of the benchmark Guler-suggested feature set distance). The

critical region to reject H0 is t > tα .

Table III and Table IV shows the highest level at which

H0 can be rejected in these tests.

From Table III, comparing the results based upon the

same wavelet choice, we observed: (1) For sensitivity, H0

is rejected at a significant level (α = 0.05) in 2 cases (DB4

and DB2) of Set#1 & Set#2, 1 case (DB4+DB2) of Set#3 and

1 case (DB4) of Set#5; H0 is rejected at a weakly significant

level (α = 0.1) in 1 cases (DB4) of Set#3 & Set#4; (2) For

specificity, H0 is rejected at a highly significant level (α =
0.01) in all cases, indicating the improvement in specificity

is both universal and profound; (3) Influenced by specificity,

H0 is also rejected at a highly significant level in distance-to-

(0,1) except 2 cases (DB2 and DB4+DB2) of Set#5, where

the H0 is still rejected at a significant level. Comparing

the results with benchmark feature set/wavelet choice, we

observed: (1) By simply using DB4 instead of DB2,, the

sensitivity can be significantly improved and the specificity

and distance-to-(0,1) can be highly significantly improved;

(2) By employing the dual-wavelet strategy, sensitivities are

highly increased; The exception is Set#5, in which dual-

wavelet degrades the sensitivity.

Table IV compares the performance of single-wavelet with

dual-wavelet within feature set. In Table IV, we observed H0

is rejected at a highly significant level (α = 0.01) in most

cases, especially in half of the sensitivities, indicating dual-

wavelet is a powerful strategy, since Table III has shown

that it is difficult to make improvement in sensitivity. Only

1Benchmark tests use Guler’s feature set and mother wavelet DB2

TABLE III

THE HIGHEST LEVEL AT WHICH H0 CAN BE REJECTED WITH DIFFERENT

FEATURE SET/WAVELET CHOICES

Comparison between µg with Different Feature Sets µ
with Same Wavelet Choice

H
H
H
H

µg

µ
Set1 Set2 Set3 Set4 Set5

mother
wavelet

Sensitivity
0.05 0.05 0.1 0.1 0.05 DB4
0.05 0.05 fail fail fail DB2
fail fail 0.05 fail fail DB4+DB2

Specificity
Guler 0.01 0.01 0.01 0.01 0.01 DB4

0.01 0.01 0.01 0.01 0.01 DB2
0.01 0.01 0.01 0.01 0.01 DB4+DB2

Distance to (0,1)
0.01 0.01 0.01 0.01 0.01 DB4
0.01 0.01 0.01 0.01 0.05 DB2
0.01 0.01 0.01 0.01 0.05 DB4+DB2

Comparison between Benchmark µg and
Different Feature-Set + Wavelet-Choice µ

Sensitivity
0.05 0.05 0.05 0.05 0.01 DB4
0.01 0.01 0.01 0.01 0.1 DB4+DB2

Specificity
Bench- 0.01 0.01 0.01 0.01 0.01 DB4

mark 1 0.01 0.01 0.01 0.01 0.01 DB4+DB2
Distance to (0,1)

0.01 0.01 0.01 0.01 0.01 DB4
0.01 0.01 0.01 0.01 0.01 DB4+DB2

TABLE IV

THE HIGHEST LEVEL AT WHICH H0 CAN BE REJECTED OF SINGLE VS.

DOUBLE MOTHER WAVELETS WITHIN FEATURE SET

Comparison between Dual-Wavelet µ
and Single-Wavelet within Feature Set µg

H
H
H
H

µg

µ Guler Set1 Set2 Set3 Set4 Set5
DB4+DB2

Sensitivity
DB4 0.01 0.05 fail 0.01 0.05 fail
DB2 0.01 0.01 0.1 0.01 0.01 0.05

Specificity
DB4 0.01 0.01 0.01 0.01 0.01 0.01
DB2 0.01 0.01 0.01 0.01 0.01 0.01

Distance to (0,1)
DB4 0.01 0.01 0.01 0.01 0.01 0.1
DB2 0.01 0.01 0.01 0.01 0.01 0.01

2 cases failed to reject H0 at a weakly significant level. If

comparing to the benchmark feature set using single-wavelet,

all cases of feature sets using dual-wavelet reject H0 at a

highly significant level except the sensitivities of Set#5.

IV. CONCLUSIONS

In this paper we have experimented with new strategies

for improving the performance of machine classifiers used to

detect segments of EEGs containing ETs. From a group of

7 potential wavelet features, we derived and tested 5 distinct

feature sets. We assessed classifier performance by combin-

ing features derived from two different mother wavelets. We

also ran tests to determine if any improvement in model

performance was statistically significant. Our results showed
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that our new wavelet features improve the classification

ability (in the best case, +5.75% in sensitivity and +6.76%

in specificity at highly significant level: α=0.01) and that

the use of two dual-mother-wavelets in a classifier may be

better than using a single-mother-wavelet under the condition

that both wavelets are able to detect the events of interest.

We think that the dual mother wavelet strategy improves

performance of the machine learning classifiers because it

may be difficult to represent these various ET signal patterns

using feature sets based on a single mother wavelet.
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