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Abstract— The aim of this research was to study the changes 

that Alzheimer’s disease (AD) elicits in the organization of 

brain networks. For this task, the electroencephalographic 

(EEG) activity from 32 AD patients and 25 healthy controls 

was analyzed. In a first step, a disequilibrium measure, the 

Euclidean distance (ED), was used to estimate the similarity 

between the spectral content of each pair of electrodes. In a 

second step, the similarity matrices were used to generate the 

corresponding graphs, from which two parameters were 

computed to characterize the network structure: the mean 

clustering coefficient and the mean path length. Results 

revealed significant changes (p<0.05) in ED values, as well as in 

the mean clustering coefficient and the mean path length, 

though they depend on the specific frequency band. Our 

findings suggest that AD is accompanied by a significant 

frequency-dependent alteration of brain network organization. 

I. INTRODUCTION 

Alzheimer’s disease (AD) is a primary neurodegenerative 
dementia that affects the brain cortex. Consequently, neural 
function is modified, reflecting the structural and functional 
deficits of dementia [1]. Accumulating evidence supports the 
notion that the analysis of electroencephalographic (EEG) 
activity can be a helpful tool to gain further insights into the 
understanding of neural dynamics [2]. Therefore, 
considerable effort has been devoted to explore the EEG 
abnormalities associated with AD [3]. 

Recently, modern network theory has been introduced in 
cognitive neuroscience to overcome the limitations of the 
analyses based on characterizing local activation patterns in 
individual sensors and functional interactions among 
different sensors [4]. This new framework is based upon 
graph theory, which is becoming a useful tool to analyze the 
complex organization of brain networks [5]. In this regard, 
the application of graph theory concepts to study AD 
revealed diverse neural network changes, leading to a less 
efficient brain function [6]–[9]. 
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The present research introduces the application of a 
disequilibrium measure, the Euclidean distance, to 
characterize the similarity patterns between the spectral 
content of EEG activity from different brain regions. This 
measure, derived from information theory, provides an 
alternative description of neural interactions to that offered 
by linear and non-linear synchronization parameters [10]. On 
the basis of the similarity matrix between the spectral content 
of sensors, a graph analysis was performed to explore the 
brain network structure. Hence, we wanted to address several 
questions: (i) does the proposed methodology based on a 
disequilibrium measure introduce an alternative description 
of neural dynamics to that provided by conventional spectral 
and non-linear synchronization parameters?; (ii) can the 
proposed methodology be useful to account for the structural 
network changes that AD elicits in the long-scale neural 
networks? 

II. MATERIALS AND METHODS 

A. Subjects and EEG Recordings 

Thirty-two patients with a diagnosis of probable AD (10 

men and 22 women, age = 79.5 r 6.5 years, mean r standard 
deviation SD) and twenty-five cognitively normal volunteers 

(9 men and 16 women, age = 76.0 r 7.4 years, mean r SD) 
were enrolled in the study. Their cognitive function was 
assessed by means of the Mini-Mental State Examination 
(MMSE). AD patients obtained a mean MMSE score of 18.2 

r 6.7 points, whereas MMSE score for controls (CS) was 

28.8 r 1.5 points. No significant differences were observed in 
the mean age and gender of both groups (p > 0.05, Mann-
Whitney U tests). All controls and patients’ caregivers gave 
their informed consent to participate in the study. The 
research was approved by the local ethics committee. 

Five minutes of spontaneous EEG activity were recorded 
from the fifty-seven participants using a digital 
electroencephalograph XLTEK® (Natus Medical), placed in 
the “Hospital Universitario Pío del Río Hortega” (Valladolid, 
Spain). EEG recordings were simultaneously acquired from 
19 sensors distributed by the scalp according to the 
international 10-20 system (C3, C4, Cz, F3, F4, F7, F8, Fp1, 
Fp2, Fz, O1, O2, P3, P4, Pz, T3, T4, T5 and T6), with 
subjects in a relaxed state, awake and with their eyes closed. 
The sampling frequency was 200 Hz and a 50 Hz notch filter 
was applied to remove power line noise. Artifact-free epochs 

of length 5 s (26.4 r 8.5 artifact-free epochs per channel and 

subject, mean r SD) were selected for further analysis. To 
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complete the preprocessing step, each EEG epoch was 
filtered between 1 and 40 Hz. 

B. Disequilibrium measure 

In order to quantify the differences in the spectral content 
between EEG sensors, a statistical disequilibrium measure 
was used: the Euclidean distance (ED). ED has been 
previously applied to analyze the irregularity of 
electromagnetic brain signals [10], though it can be also 
defined like the distance in the probability space between two 
given distributions [11]. Hence, ED has proven useful to 
quantify the changes in the spectral content and, therefore, to 
measure the distance between two power spectra [12]. Unlike 
previous studies [12], in the present research we wanted to 
assess the role of conventional frequency bands. As a 
consequence, instead of computing the distance for the whole 
power spectra, six frequency bands were considered: / (1-4 
Hz), � (4-8 Hz), .1 (8-10 Hz), .2 (10-13 Hz), � (13-30 Hz), 
and � (30-40 Hz). Thus, the normalized power spectral 
density (PSDn) was initially computed for each 5-s length 
EEG epoch (1000 samples). The normalized ED between the 
sensors i and j is then defined as [11], 
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where � �fPSD
i

n
 and � �fPSD

j

n
 are the normalized power 

spectral densities for the sensors i and j, respectively; 
whereas, b denotes the conventional aforementioned 
frequency bands. 

C. Graph Theory 

A network can be represented by means of a graph, 
formed by a number of nodes, or vertices, and the 
corresponding edges between them [13]. Each edge can be 
weighted depending on the importance or strength of the 
relation between the vertices. The corresponding weights 
between edges can be defined using the similarity between 
the recorded signals in the different electrodes. In this study, 
the weight between two vertices i and j is computed using a 
distance measure (i.e. ED) between electrodes i and j for each 
frequency band. Hence, the higher the ED values, the lower 
the similarity between the spectral content of the sensors. 
Consequently, the ED values were subtracted from the unity 
to reflect a similarity measure [12], 
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Hence, we can define a network with N = 19 vertices 

(corresponding to the 19 EEG sensors), where b

ijw  denotes 

the weights between vertices for each frequency band. The 
generated graph can be then characterized using several 
parameters, though the clustering coefficient and the average 
path length are two fundamental features [5], [13]. 

The clustering coefficient measures for each vertex i the 
extent (fraction) to which its neighbors are also connected. It 

should be noted that symmetry is required ( b

ijw  = b

jiw ) and 0 

� b

ijw  � 1 [8]. These constraints are fulfilled by ED. 

Therefore, the clustering coefficient for the vertex i and each 
frequency band is defined as, 
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As shown in (3), the weights with k=i, l=i or l=k are not 

considered in the computation of b

iC . In the case of isolated 

nodes (i.e. vertices with degree zero), all the weights b

ijw  are 

zero and the clustering coefficient takes the value 0 b

iC  

[8]. Finally, the average clustering coefficient for the whole 
graph at each frequency band is defined as, 
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In addition to the clustering coefficient, the average path 
length is a fundamental parameter to characterize a graph. It 
is defined as the average number of edges of the shortest path 
between pairs of edges. The length between two vertices i 
and j is defined as the inverse of the weight between them: 

b

ij

b

ij wL /1  if 0zb

ijw , and �f b

ijL  if 0 b

ijw  [8]. The path 

length between two vertices is then defined like the sum of 

the lengths of the edges of this path. The shortest path b

ijl  

between two vertices i and j is the path between i and j with 
the shortest length [8]. The average path length for the whole 
graph at each frequency band is thereby calculated as, 
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From (4) and (5), it can be seen that b

WC  is calculated 

using the arithmetic mean, whereas b

WL  is computed using 

the harmonic mean. Hence, the definition of b

WL  takes into 

account infinite path lengths between isolated nodes (i.e. 
1/�:0) [8]. 

It is noteworthy that both b

WC  and b

WL  depend on the 

edge weights, the network structure, and the network size. In 
order to achieve size-independent network parameters, they 

were normalized by � �surrogateb

WC ,  and � �surrogateb

WL , , resulting 

in the mean clustering coefficient � �surrogateb

W

b

W

b

W CCC ,/ˆ   

and the mean path length � �surrogateb

W

b

W

b

W LLL ,/ˆ   for each 

frequency band. � �surrogateb

WC ,  and � �surrogateb

WL ,  represent 

the averaged clustering coefficient and path length over an 
ensemble of 50 surrogate random networks. These networks 
were obtained from the original networks by randomly 
reshuffling the edge weights [8]. 

All computations were performed using the software 
package Matlab (version 7.14; Mathworks, Natick, MA). 

5991



  

 

Figure 1. Boxplots displaying the differences between AD patiens and controls in mean clustering coefficients ( WĈ ) for each frequency band (/, 1-4 

Hz; �, 4-8 Hz; .1, 8-10 Hz; .2, 10-13 Hz; �, 13-30 Hz; and � , 30-40 Hz). Significant p-values are marked with asterisks (*, p < 0.05; **, p < 0.01).

TABLE I.  EUCLIDEAN DISTANCE VALUES FOR EACH GROUP IN 

THE FREQUENCY BANDS THAT SHOWED STATISTICALLY SIGNIFICANT 

RESULTS (P<0.05) 

Frequency band 
Group 

�
 a

 .2
 a

 �
 a

 

CS 0.021 [0.014-0.031] 0.028 [0.019-0.033] 0.020 [0.017-0.028] 

AD 0.040 [0.026-0.051] 0.017 [0.008-0.025] 0.015 [0.009-0.019] 

a. Values are reported as median [interquartile range]. 

D. Statistical Analysis 

Initially, an exploratory data analysis was carried out. 
Data did not meet parametric test assumptions and thereby 
statistical significance was assessed by means of Mann-

Whitney U tests (D = 0.05). 

Statistical analyses were carried out using the statistical 
software package SPSS Statistics (version 20; IBM Corp., 
Armonk, NY, USA). 

III. RESULTS AND DISCUSSION 

In a first step, the graphs at each frequency band were 
calculated for each artifact-free epoch using the ED definition 
of (1). As shown in Table I, controls reached statistically 
significant lower ED values in � (U=177.0, p=0.0003) than 
AD patients, whereas the opposite behavior was observed for 
ED in .2 (U=195.5, p=0.0010) and � (U=183.0, p=0.0005). 
These results indicate that the distance between the PSDn 
from EEG sensors for controls is lower in low frequency 
bands and higher in high frequency bands than for AD 
patients. This result suggests that AD is simultaneously 
associated with a decrease and an increase in the degree of 
similarity, depending on the analyzed frequency range. 
Functional connectivity analyses have also found diverse 
synchronization patterns at different frequency bands. Hence, 
AD has been associated with an increase of connectivity at 
low frequency bands and a decrease of synchronization at 
high frequency bands [3], [14]. By contrast, our results 
indicate that AD elicits a decrease and an increase of 
similarity in the spectral content at low and high frequency 
bands, respectively. It is clear, however, that functional 
connectivity patterns depend on the analyzed brain regions 
[14], whereas in the present research the grand-average of 
ED values was computed. Further research should be carried 
out to study whether the topographic patterns of ED at 
different frequency bands are related to those found in 
previous synchronization and connectivity studies [3], [14]. 
Likewise, the connectivity patterns are influenced by the 
synchronization parameter [15]. In this regard, the 
disequilibrium based on ED seems to provide different 
information about the neural dynamics in AD when 
compared to connectivity measures. 

The mean clustering coefficient and the mean path length 
were calculated from each graph. The parameters were 
averaged for each subject and were statistically analyzed 
using Mann-Whitney U tests. Figs. 1 and 2 summarize the 
mean clustering coefficients and the mean path lengths at 
each frequency band for each group. As depicted in Fig. 1, 

controls obtained statistically significant higher G
WĈ  

(U=251.0, p=0.0163) and T
WĈ  (U=168.5, p=0.0002) than AD 

patients, whereas 2ˆD
WC  (U=191.5, p=0.0008) and E

WĈ  

(U=185.0, p=0.0005) were significantly lower for controls 
when compared to AD patients. On the other hand, Fig. 2 

shows that controls reached statistically significant lower 
G
WL̂  

(U=270.5, p=0.0370) and 
T
WL̂  (U=179.5, p=0.0004) values 

than AD patients, though 2D̂
WL  (U=196.0, p=0.0010) and 

E
WL̂  

(U=175.5, p=0.0003) were significantly higher for controls 
than for AD patients. 

It is noteworthy that graphs showing a high regularity are 
strongly clustered and have long path lengths. On the 
contrary, graphs exhibiting a high degree of disorder are 
barely clustered and have short path lengths. They are not 
good candidates to describe a real system, like the human 
brain. Therefore, Watts and Strogatz [16] suggested a novel 
kind of networks, called “small-world networks”, in which 
high clustering coefficients and short path lengths could be 
found simultaneously. Thus, small-world networks provide 
efficient information processing with a minimal number of 
connections [5]. In this regard, previous studies indicated that 
there exists a generalized loss of small-world characteristics 
in brain networks of AD patients [12]. Nevertheless, in line 
with previous research [6]–[9], our findings suggest that AD 
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Figure 2. Boxplots displaying the differences between AD patietns and controls in mean path lengths ( WL̂ ) for each frequency band (/, 1-4 Hz; �, 4-8 

Hz; .1, 8-10 Hz; .2, 10-13 Hz; �, 13-30 Hz; and � , 30-40 Hz). Significant p-values are marked with asterisks (*, p < 0.05; **, p < 0.01) 

elicits a frequency-dependent alteration of the neural network 
organization. Specifically, the loss of small-network 
characteristics can be observed in low frequency bands (/ 
and �), whereas high frequency bands (.2 and �) exhibit the 
opposite behavior. As a consequence, the association of AD 
with a global loss of small-world properties might not reflect 
the complexity of the disease. 

Finally, some aspects of the present research merit further 
consideration. Additional work is required to assess regional 
patterns of ED and neural network structure. Similarly, other 
time-frequency representations, disequilibrium measures and 
network parameters should be analyzed to further understand 
the changes that AD elicits in spontaneous EEG oscillations. 
Finally, it would be interesting to extend the analysis to the 
prodromal stage of AD (i.e., mild cognitive impairment) to 
achieve an early characterization of brain network 
abnormalities in dementia. 

IV. CONCLUSION 

Our findings support the notion that the disequilibrium 

between the spectral content of EEG activity from different 

brain regions exhibit statistically significant abnormalities in 

AD patients when compared to elderly controls. 

Furthermore, graph theory analyses suggest that AD elicits a 

frequency-dependent alteration of small-world network 

properties. 
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