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Abstract— Cochlear implants are neural prostheses that can
restore hearing. Contemporary cochlear implant devices consist
of up to 22 electrodes. An open question for future cochlear
implants is whether new electrode designs that enable less
current spread may provide improved hearing performance
through more precise control of neural activation, more elec-
trodes, or more precise positioning. Here we use a recently
proposed information theoretic model for the electro-neural
interface that enables estimates to be made of the optimal
number of electrodes for different amounts of current spread.
We apply information theoretic approaches for finding the
channel capacity in the model to enable estimates of optimal
electrode usage probabilities and positions. We also compare
the performance in the model when auditory nerve fibers are
assumed to be heterogenous, with a random distribution of
firing thresholds and relative spreads, versus an assumption
that they are all identical.

I. INTRODUCTION AND BACKGROUND

Cochlear implants [1], [2] are biomedical neural prosthe-
ses that can help people with hearing loss caused by loss of
inner hair cells in the cochlea (inner ear). In a healthy ear,
inner hair cells convert sounds into electrical pulses called
action potentials in fibers of the auditory nerve. These action
potentials propagate to the brain where they are processed
and perceived as sound. The function of a cochlear implant is
to replace the missing inner hair cells, which is achieved by
an electrode array that is implanted in the inner ear. Sound
is captured by a microphone and converted into electrical
signals in different frequency bands, which then drive the
electrodes of the array to directly stimulate the auditory
nerve [3].

Contemporary cochlear implants use arrays of up to 22
electrodes. More electrodes than this do not improve hearing
performance. The primary limiting factor is thought to be
current spread [4], which causes electrodes that are close
together to stimulate similar groups of auditory nerve fibers.
Within the cochlea, the electrodes cannot be positioned
any closer to the auditory nerve, so an alternative method
for minimizing the problems of current spread is through
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focussed stimulation, more precise positioning of electrodes,
or optimizing electrode usage probabilities.

Previous work has already developed an information theo-
retic modeling framework for estimating the optimal number
of electrodes in cochlear implants from an information
theoretic perspective [5]. This approach relies on a model
of stochastic action potential generation, and the interface
between the array of electrodes and the auditory nerve is
conceptualized as a discrete memoryless channel (DMC).
It enables numerical calculations of the mutual information
between an input random variable (choice of electrodes) and
an output random variable (defined as a function of the active
nerve fibers in response to an electrode choice).

However, in [5], electrodes are assumed to be uniformly
distributed along the array and used with identical probabil-
ities. To determine whether changing these two assumptions
can significantly improve performance in the model, here we
aim to find the optimal usage probability of each electrode.
We study this in order to see if attempting to optimize
electrode usage probabilities and/or placements might be
a feasible way to improve the performance of cochlear
implants.

A. Overview of modeling framework

The model proposed in [5] has five individual components,
each of which can be individually improved or adapted. For
example, components 2 or 3 can be adapted by applying real-
istic finite element method models [6]. The five components
in [5] are:

1) geometry of fiber and electrode locations;
2) mechanisms of stochastic action potential generation

in fibers of the auditory nerve;
3) current spread from each electrode;
4) dependence of loudness perception on overall auditory

nerve activity;
5) information theoretic modeling of place discrimination.

In [5], we extended a simple existing stochastic model of
electrically evoked auditory nerve activity [7], and estimated
the mutual information between a choice of electrode, and
the output of our place discrimination model. Here, we study
channel capacity, which is the maximum mutual information
between the input random variable, Xe(j), j = 1, . . . ,M ,
and an output random variable Z. The input Xe(j) describes
the normalized location of electrode j along the array, M is
the number of electrodes, and Z is defined as a function of
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active nerve fibers. The mutual information is defined as:

I(Xe;Z) = −
M+1∑
i=1

PZ(i) log2(PZ(i))

+

M∑
j=1

PXe
(j)

M+1∑
i=1

PZ|Xe
(i|xe,j) log2(PZ|Xe

(i|xe,j)),

(1)

where PZ(i) =
∑M

j=1 PXe
(j)PZ|Xe

(i|xe,j) ∀i =
1, . . . ,M + 1. A more detailed definition of Z and the
(M + 1)–th output state can be found in [5].

Apart from aiming to maximize mutual information by
varying electrode usage probabilities, we otherwise strictly
follow the same assumptions and parameters of [5], except
where mentioned. In that work, the mutual information was
computed for assumed numbers of total electrodes between 2
and 45. In this way, the optimal number of electrodes is that
which achieves the maximum mutual information. In a DMC,
if the input probabilities can vary, the channel capacity can
increase, and finding channel capacity for a given number
of electrodes is clearly an optimization problem. We discuss
methods for carrying out this optimization in Section II. First,
however, we discuss the stochastic action potential model.

B. Random fibers
In our modeling framework, as introduced in [5], a

Bernoulli random variable, Yi ∈ {0, 1}, denotes whether
fiber i produces an action potential in response to current
Cf,i, or not. Yi = 1 is the case that fiber i generated an
action potential and Yi = 0 otherwise. The probability that
Yi = 1 given the current that stimulates it is Cf,i is assumed
to be described by

Ps(Cf,i) := 0.5

(
1 + erf

(
Cf,i − θi√

2σi

))
, (2)

where Cf,i is the current in amperes at the location of fiber i,
θi denotes the current that produces an action potential with
the probability of one half, and σi is given by σi = (RS)θi.
RS is the relative spread of a fiber’s firing response as in [8],
[9].

We study two cases. In the first case, all fibers have
identical thresholds and relative spreads. In the second case,
which we call ‘Random Fibers’, the auditory nerve fibers are
assumed to have thresholds randomly chosen from a uniform
distribution on [−5 + E(θ), 5 + E(θ)] on a decibel scale.
Also, relative spreads are randomly chosen from a normal
distribution with a standard deviation of 0.06 and a mean
that is obtained from the equation of E[RS]. These choices
are the same as in [7]. As a consequence of introducing
this heterogeneity, the mutual information and the optimal
input distribution at channel capacity may be different for
independent trials in which the parameters are different, just
as they might be in different cochlear implant users.

II. FINDING CHANNEL CAPACITY AND
CAPACITY-ACHIEVING INPUT PROBABILITIES
The classical Blahut-Arimoto algorithm [10] is a widely

used technique for numerically obtaining channel capacity

for a given DMC. This is an iterative algorithm that can
converge to a solution for channel capacity for any given
DMC by alternately modifying the input and the output
distribution. Since it is simple and well-known, the Blahut-
Arimoto algorithm has been widely used in practice. A more
efficient algorithm called convex optimization [11] is also
applicable to channel capacity problems. Thus, the channel
capacity problem can be solved directly by either the Blahut-
Arimoto algorithm or convex optimization. In this paper, both
Blahut-Arimoto algorithm and convex optimization are used
for calculating channel capacity.

III. RESULTS

In this section, we first present and discuss results obtained
via numerical evaluation of channel capacity and capacity-
achieving input distribution as a function of array-to-nerve
distance r and number of electrodes M . Then we investigate
to what extent the randomness of fibers influences the
optimal number of electrodes. All parameters are the same
as in [5]; the major difference is that we compute mutual in-
formation and optimal number of electrodes after optimizing
input distribution, and use the mutual information achieved
by uniformly distributed inputs and the corresponding op-
timal number of electrodes as comparison. Following [5],
the distance between the electrode array and auditory nerve
fibers is assumed to be r ∈ [0, 2] mm, and the total number
of fibers is assumed to be N = 10000. In this paper, we
only consider the case of maximum current Cmax where
the mean spike count E is calculated as E[Y |Cmax(r)] =
0.1N [12]. Here, maximum current level is defined as the
value of current that produces neural activity with perceived
loudness at a maximum “comfortable level”. Because ac-
ceptable performance of cochlear implants generally results
from stimulation of electrodes at current levels towards the
top of the dynamic range (i.e., close to Cmax), our results
in this paper are sufficient to illustrate how the electrode
usage probabilities influence mutual information and the
corresponding number of electrodes.

A. Mutual information and corresponding input distribution

We computed the mutual information as a function of
r ∈ [0, 2] mm and for all M = 1, . . . , 50. Note that the
mutual information is directly a function of current at each
fiber which is as a function of r [5]. Here, we fixed the
positions of the electrodes, so the channel capacity (maxi-
mum mutual information) could be easily found by applying
the Blahut-Arimoto algorithm or convex optimization. The
mutual information and corresponding input distribution for
uniformly distributed inputs and non-uniformly distributed
inputs are shown in Fig. 1. In the figures of this paper, BA
refers to the Blahut-Arimoto algorithm. Since the Blahut-
Arimoto algorithm and convex optimization lead to the same
channel capacities for all electrode array sizes, we only
present the results obtained by the Blahut-Arimoto algorithm.

We also computed channel capacity-achieving input prob-
ability distributions for some specific cases of M . Fig. 2
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Fig. 1. Comparison of uniformly distributed input probabilities and
optimized input probabilities. Mutual information achieved by optimal
number of electrodes (a) and optimal number of electrodes (b) as a function
of array-to-nerve distance r. Optimization via Blahut-Arimoto algorithm and
verified (not shown) by convex optimization.

shows two example optimal input distributions for M = 6
and M = 26. The resultant probability for each point in the
distribution is equivalent to the optimal usage probability of
an electrode located at that point. At this stage, we only
consider r = 2 mm, since in reality the distance between
the electrode array and auditory nerve fibres is usually no
less than 2 mm. As expected, we found that the input
distributions obtained by the Blahut-Arimoto algorithm and
convex optimization were identical even when we varied
the number of electrodes. Note that the channel capacity
is achieved by non-uniformly distributed electrode usage
probabilities only when the number of electrodes is large,
i.e. comparable to the optimal number of electrodes achieved
when the probabilities are not optimized. Channel capacity
can be achieved by uniformly distributed probabilities when
the number of electrodes is small.

B. The impact of randomly chosen fiber parameters on the
optimal number of electrodes

We estimated the impact of randomly setting fiber thresh-
olds and relative spreads (see Section I.B) on the optimal
number of electrodes by computing the mean, maximum,
and minimum of the optimal number of electrodes from 20
independent trials. The results in Fig. 3 show the range of the
optimal number of electrodes for r ∈ [0, 2]. We found that
the randomness of the fibers indeed influences the optimal

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Positions of electrodes
(a)

E
le

c
tr

o
d
e
s
 u

s
a
g
e
 p

ro
b
a
b
ili

ti
e
s

 

 

uniformly distributed inputs

optimized inputs (calculated by BA)

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

Positions of electrodes
(b)

E
le

c
tr

o
d
e
s
 u

s
a
g
e
 p

ro
b
a
b
ili

ti
e
s

 

 

uniformly distributed inputs

optimized inputs (calculated by BA)

Fig. 2. Channel capacity-achieving input distributions. Capacity-achieving
input distributions calculated via the Blahut-Arimoto algorithm and verified
(not shown) by convex optimization. Two cases are shown: (a) M = 6,
(b) M = 26.

0 0.5 1 1.5 2

25

30

35

40

45

Array−to−nerve distance, r (mm)

O
p
ti
m

a
l 
n
u
m

b
e
r 

o
f 
e
le

c
tr

o
d
e
s

 

 

mean of optimal number of electrodes

maximum of optimal number of electrodes

minimum of optimal number of electrodes

Fig. 3. Comparison of mean, maximum, and minimum of optimal number
of electrodes for Cmax as a function of array-to-nerve distance r, from 20
trials of randomly chosen fibers.

number of electrodes to some extent. However, the range of
optimal number of electrodes is no larger than 3 electrodes
for all values of r.

IV. DISCUSSION

A. Channel capacity-achieving input distribution

No obvious difference in optimal number of electrodes
was found between uniformly distributed electrode proba-
bilities and optimized electrode probabilities. However, the
mutual information that corresponds to the optimal number
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of electrodes shows a slight increase for the whole range of
the array-to-nerve distance, after optimization. Further, we
found that the capacity-achieving input distributions show
significant differences only for the cases where the electrode
array sizes approach or exceed the optimal number of elec-
trodes. This phenomenon can be related to how we denote
the ambiguity output states in this modeling framework.
An ambiguity output state is defined as two or more fiber
partitions generating action potential count difference smaller
than a constant D [5]. The number of fiber partitions is the
same as the number of electrodes. Thus, the ambiguity state
is more likely to occur when the number of electrodes is
increased, which can be expected in real auditory nerve fibers
due to current spread. The result in Fig 2(b) shows that the
input probabilities fall to approximately zero at the second
electrode and the penultimate electrode. The 50% less fibers
in the first partition and in the last partition is caused by the
way we define the partitions of fibers. As a consequence,
the ambiguity state is far more likely to appear when the
stimulated electrode is close to the first two partitions or the
last two partitions.

The results here illustrate that the method of defining the
output states will have an influence on the performance of
our modeling framework. Thus, if we change the way that
we define the channel’s output states (corresponding to a
changed conceptual model about how the brain interprets
activity in the auditory nerve), an improvement of this mod-
eling framework could be expected. Furthermore, varying
the positions of electrodes can increase the channel capacity
and vary capacity-achieving distribution, which can be an
alternative way for estimating the optimal placements and
usage probabilities of electrodes.

B. How randomness of fibers influence the optimal number
of electrodes

We introduced random fibers into our modeling frame-
work, then we calculated the optimal number of electrodes
using Cmax. No more than a range of 3 electrodes for the op-
timal number of electrodes were observed for any value of r.
We conclude that randomness of fibers does not have a large
effect upon the optimal number of electrodes estimated in
the model. The mean optimal number of electrodes decreases
monotonically with the increasing of array-to-nerve distance,
which exactly follows the theory and our expectation. The
result suggests that the same design of electrode array might
be used for almost all patients, as the random fibers do not
greatly influence the optimal number of electrodes.

However, here we present results only for 10000 nerve
fibers in the model, and all fibers are uniformly located
along the electrode array. In future work, we plan to study
variations of the auditory nerve fiber survival rate and fiber
locations in the model.

In general, there remain a number of aspects that can
be improved and made more realistic without altering the
basic framework and approach. For example, we define
output states based on electrode array sizes and locations of
electrodes, which forces us to fix the number and positions

of electrodes before we optimize the electrode usage prob-
abilities. An improved design of output states might enable
us to remove assumptions about the number and locations
of electrodes, and allow the information theoretic optimiza-
tion to freely find the optimal values of these parameters.
When the positions can vary, channel capacity can increase,
and the optimization problem in standard form is non-
convex. However, the problem can be converted to a convex
one [13], and using this approach allows us to relate the
capacity-achieving input positions to the optimal positions
of electrodes. Also, a more realistic spiral model for the
cochlea and electrode array was studied in [14]. Comparing
optimized, non-uniformly distributed electrodes in this three-
dimensional spiral model with the original model, which
used a linear geometry, can be other valuable future work.
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