
  

  

Abstract— In previously published work, we showed the 
progress we’ve made towards creating a large-scale, 
biologically realistic model of the rat hippocampus, starting 
with the projection from entorhinal cortex (EC) to the dentate 
gyrus (DG).  We created the model to help us study how the 
common components of neurobiological systems in mammals – 
large numbers of neurons with intricate, branching 
morphologies; active, non-linear membrane properties; non-
uniform distributions throughout membrane surface of these 
non-linear conductances; non-uniform and topographic 
connectivity between pre- and post-synaptic neurons; and 
activity-dependent changes in synaptic function – combine and 
contribute to give a particular brain region its “neural 
processing” properties.  In this work, we report on the results 
of a series of simulations we ran to test the role of feed-forward 
and feedback inhibition in the dentate gyrus.  We find that a) 
the system shows rhythmic bands of activity only in the 
presence of feedback inhibition, b) that the frequency of 
rhythmicity increases with increasing amounts of feed-forward 
inhibition, c) that it decreases with increasing amounts of 
feedback inhibition, and d) that strong excitatory inputs appear 
to enhance and prolong the amount of rhythmicity in the 
system. 

I. INTRODUCTION 

The fundamental building block of neurobiological 
systems is the neuron, which communicates with other 
neurons predominantly via electro-chemical signals.  The 
chemical compounds that enable these signals are known as 
neurotransmitters. 

There are many types of neurotransmitters in the brain.  
Glutamate is the most abundant excitatory neurotransmitter, 
and is primarily found/contained in projection neurons.  
GABA, on the other hand, is one of the most common 
inhibitory neurotransmitters, and is mostly found/contained 
in interneurons. 

In a given brain system, like the hippocampus, a major 
contributor to the relationship between input and output spike 
patterns is the balance between excitatory and inhibitory 
influences on the system.  Several factors affect this balance.  
One is the relative number of glutamatergic vs. gaba-ergic 
neurons (the difference between the two is typically large).  
Another factor is the variety of cell types in the system.  A 
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third factor is the number, strength, locations and latencies of 
the synaptic connections, including both feed-forward and 
feedback projections. 

One of the things our group has been interested in is how 
feed-forward and feedback inhibition affects network activity 
in the dentate gyrus, the region of the hippocampus that first 
processes incoming neural activity.  For example, how does 
the strength of the excitatory input from EC affect granule 
cell activity?  What is the role of basket cell feed-forward and 
feedback inhibition on granule cell spiking?  To answer these 
questions, we added basket cells, which strongly inhibit 
activity in the granule cell layer, to our EC-to-DG model and 
ran a series of simulations in which we varied the strength of 
the feed-forward and feedback connections. 

II. METHODS 

A. Hardware/Software/Model Components 

We are using the same hardware and software 
configuration as reported previously (1), and refer the reader 
to that work for the relevant details.  We also continue to use 
granule cells with unique dendritic tree morphologies and 
multiple non-linear voltage- and ligand-gated membrane 
channels, connected to by layer II entorhinal cortical cells as 
constrained by the topography of the system (2).  Though we 
have implemented multiple types of synaptic plasticity (3), 
we did not include those mechanisms in this set of 
simulations. 

B. Model Structure 

In addition to the main excitatory projection from EC to 
DG, we also implemented the projections from the granule 
cell population to basket cells, the inhibitory projection from 
basket cells back to the granule cell layer, and the excitatory 
projection from EC to the basket cell population.  Figure 1 
shows the connectivity diagram of the basic circuit, with both 
feed-forward and feedback inhibitory connections. 

 

III. RESULTS 

The first set of results is the baseline dataset, i.e., a 
simulation that had no inhibition at all.  Figure 2 shows the 
results of this simulation. 

With no inhibition at all, notice what you see:  there’s a 
strong initial wave of activity in the granule cell population, 
caused by the onset of entorhinal activity, and followed by 
spatio-temporal “clusters” of activity.  In this case, “spatio-
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temporal clusters,” means that granule cells that are 
physically near each other are spiking together. 

One of the ways we can characterize this data is by doing 
a population-level frequency analysis on the spike activity, as 
shown in the plot in the bottom of Figure 2.  What you see is 
a very smooth frequency profile.  Most of the strength of the 
signal is in the lower frequencies (30 Hz and less) with no 
sudden peaks or valleys in the plot. 

Next, when we add inhibition, both feed-forward and 

feedback, to the model, all of a sudden, we see waves of 
rhythmic, or synchronous activity, with corresponding peaks 
in the frequency plots (Figure 3).  Generally speaking, these 
peaks are in the 30-45 Hz range, which puts the activity in 
the gamma band.  Though these plots don’t show it, in some 

cases, the rhythmicity dies out after a few hundred 
milliseconds, while in other cases, it persists for more than a 
second or two before finally dying out. 

In this particular case, we were experimenting with 
increasing the strength of the feedback inhibition (Figure 3).  

 
Figure 1: Model schematic.  The diagram on the left shows 
the high-level connectivity of the system, with inputs from the 
mEC and lEC enervating both the granule cell and basket cell 
populations.  Both granule and entorhinal cells enervate 
basket cells, which, in turn, inhibit the GC population. 

 
Figure 2, top: spike raster plot showing the response of the 
granule cell population to an input consisting of poisson-
distributed broadband noise. Bottom: population-level 
frequency plot. 

 
Figure 3: Results from varying the level of feedback inhibition with respect to the amount of both excitatory input and feed-forward inhibition.  
Increasing feedback inhibition strength decreases frequency of synchrony (peak moves from ~40 Hz. to ~35 Hz. and becomes stronger - ~65 db to ~70 
db). 
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As a result, what we see is that as the feedback circuit gets 
stronger, the frequency of the “waves” decreases – it shifts 
from a 40 Hz peak to a 35 Hz peak – but becomes stronger 
and cleaner.  So it looks like some kind of modulation is 
occurring.  Also of note is the peak of strong activity less 

than 10 Hz, which is present in all the data where inhibition 
occurs. 

Next, we move to a set of experiments where we vary the 
strength of the feed-forward inhibition (Figure 4).  What we 
see here, again, is modulation: as we increase the strength of 
the feed-forward projection, the frequency of synchrony also 

 
Figure 4: Results from varying the level of feed-forward inhibition with respect to the amount of both excitatory input and feedback inhibition.  
Increasing feed-forward inhibition strength increases frequency of synchrony (peak moves from ~35 Hz. to ~42 Hz. and becomes weaker - ~68 db to 
~63 db). 

 
Figure 5: Results from varying the level of excitatory input with respect to the amount of both feed-forward and feedback inhibition.  Increasing 
excitation strength increases both duration and frequency of synchrony (peak moves from ~30 Hz. to ~40 Hz. and becomes much stronger - ~60 db to 
~66 db). 
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increases (there’s a shift of the frequency peak from 35 Hz to 
about 42 Hz), but becomes correspondingly weaker and more 
filled with noise. 

After this, we held constant the strength of both the feed-
forward and feedback inhibition while varying the strength of 
the excitatory input (Figure 5).  Our observation here is that 
increasing the strength of the excitatory connection tends to 
drive the system to both faster, stronger, and longer lasting 
oscillations when inhibition is present in the model.  In this 
case, the shift from a 30 Hz, 60 db peak to a 40 Hz, 66 db 
peak is a fairly strong one. 

Finally, we thought we should look at both feed-forward 
and feedback inhibition in isolation from each other (Figure 
6).  Here, the left-most plot is the baseline data, showing us 
network activity in the absence of inhibition – we’ve seen 
this already.  The middle plot shows what happens when 
there’s feedback inhibition only, while the right-most plot 
shows network activity with just feed-forward inhibition.  As 
we can see, the feedback-only network shows strong 
oscillations right around 30 Hz, while neither of the other 
models have any oscillatory activity to speak of.  Also of note 
are a couple of things occurring in the feed-forward-only 
network.  First, the “clustering” in the granule cells is much 
denser than in the other two cases.  Second, we see a small 
amount of clustering in the basket cell population.  And third, 
the under-10 Hz frequency peak, which we’ve seen in many 
of the other data sets, shows up strongly here (this is the theta 
band). 

IV. DISCUSSION 
Summarizing these results, there are a few points to make.  

First, inhibition is able to cause new types of network 

activity that otherwise wouldn’t exist, namely, the rhythmic 
banding and the less-than-10 Hz frequency peak that we see.  
Second, the strength of both the excitatory and inhibitory 
connections seems to have a modulatory effect on the 
existing network activity, whether it’s to change the 
frequency, duration, or strength of the rhythmicity.  Might 
these relative connection strengths be a built-in mechanism 
that the nervous system has for modulating the various types 
of activity – namely theta and gamma rhythms – that occur 
in the hippocampus? 
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Figure 6: Left: GC spiking activity when there is no basket cell activity.  Middle: we see the network activity in the presence of feedback inhibition. 
Right: network activity in the presence of feed-forward inhibition.  Of note is the strong amount of rhythmicity in the middle plot, as borne out by the 
frequency analysis (bottom). 
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