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Abstract— Calculating the membrane potential of a neurite
under extracellular electrical stimulation is important in the
design of some recent stimulation strategies for neuroprosthetic
devices including retinal implants, cochlear implants, deep
brain stimulation. A common approach, widely used in the
electrical stimulation literature uses a volume conductor model
to calculate the electrical potential in the tissue and then
extracts the voltage or current density on the surface of a
neuron, which is used as input to the cable equation to calculate
the neuron’s response. However this approach ignores the effect
of the neuron itself as well as surrounding neurons on the
extracellular potential. Here we highlight that this leads to
an internal inconsistency in the overall model because the
result depends on whether the voltage or current density is
used to calculate the neural response. The magnitude of this
discrepancy is calculated for the example of a point source
electrode in a homogeneous medium and is shown to be up to
several hundred percent under some stimulus conditions. The
inconsistency can be resolved by ensuring that the voltage is
related to the current density by the transimpedance of the
neurite. Deriving a volume conductor model that satisfies this
relationship requires further work.

I. INTRODUCTION

Extracellular electrical stimulation of neurons is widely
used in neuroprosthetic devices such as cochlear implants,
retinal implants, cortical and deep brain stimulators [1], [2],
[3]. Modeling extracellular electrical stimulation of neurons
is an important step in the design of stimulation techniques
for such devices, and, therefore, has gained considerable
attention in the literature [4], [5], [6], [7].

A common approach for calculating the membrane po-
tential is based on a two-stage model, a volume conduc-
tor, stimulating electrodes and one or more neuron under
stimulation. In the first stage of the model, the extracellular
potential and current density in the tissue due to electrical
stimulation are calculated. Typically the effect of the neurite
is ignored and the extracellular potential is calculated in
the absence of the neurite. While it is possible to include
one or a few neurites in the volume conductor, the situation
becomes computationally intractable once many neurons are
included so as to model the spatial spread of excitation.
In the second stage, either the extracellular voltage or the
extracellular current density on the surface of the neurite
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is extracted from the first stage, and used as the boundary
condition to calculate the membrane potential using available
models such as the cable equation [4], [8], [6].

In principle, for the modelling approach to be internally
consistent, it should not matter whether this boundary con-
dition is described in terms of the voltage or the current
density; the resulting membrane potential should be the
same. However, this is generally not the case; a consequence
of neglecting the effect of the neurite on the extracellular
voltage and current density in stage 1 . A consistent mem-
brane potential results if and only if the extracellular voltage
is related to the extracellular current density (normal to the
membrane surface) by the transimpedance of the neurite
(see Eqs. (33) and (34) in [9]). These relations do not hold
for general volume conductors in the absence of embedded
neurites.

The objective of this paper is to quantitatively assess the
degree of discrepancy in the calculated membrane potential
between the two cases of voltage versus current density
boundary conditions on the surface of the neurite. We do this
by considering the simple example of a cylindrical neurite
in a homogeneous volume conductor with stimulation by
a point source electrode. The two stage model described
above is followed: Stage 1 uses the standard expression for
the electrical potential in a homogeneous volume conductor;
Stage 2 uses the equations derived in [9], [10] for subthresh-
old membrane potential under the two types of boundary
conditions.

II. METHODS

A. Stage 1: Point Source Stimulation in a Homogeneous
Volume Conductor

Consider the cylindrical neurite of radius b, located in a
homogeneous and isotropic volume with resistivity ρt and
separated from a point source electrode by distance h as
shown in Figure 1. The names of parameters and variables of
the model are summarised in Table I. Ignoring the presence
of the neurite on the potential, the voltage at a distance R
on the neurite surface may be written as

VA =
ρt

4πR
IA(t), (1)

or equivalently in terms of the current density,

JA =
IA(t)

4πR3
R, (2)

where R = (b− h cos θ) er + h sin θ eθ + z ez in cylindrical
polar coordinates (r, z, θ). In the above equations, IA(t) is
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TABLE I
PARAMETERS OF THE MODEL SHOWN IN FIGURE 1.

Parameter Description Unit
a Neurite radius m
b Outer cylinder radius m
d Width of the extracellular sheath, d = b− a m
ρi Intracellular space resistivity Ω·m
ρe Extracellular space resistivity Ω·m
ri Intracellular resistance, ri = ρi/πa

2 Ω/m
re Extracellular resistance, re = ρe/π(b2 − a2) Ω/m
RM Membrane’s unit area resistance Ω·m2

rM Membrane’s resistance, rM = RM/2πa Ω·m
CM Membrane’s capacitance per unit area F/m2

h Electrode distance from the neurite axis m
IA Electrode current A
JA Current density on outer cylinder boundary A/m2

VA Voltage across the outer cylinder V
VM The membrane potential V

Fig. 1. Model of point source stimulation of a cylindrical neurite.
Parameters of the model are described in Table I.

the applied current waveform, and er, eθ and ez are unit
vectors in the r, θ and z directions, respectively.

B. Stage 2: Calculation of Subthreshold Membrane Potential

The equations describing the subthreshold membrane po-
tential under voltage and current density boundary conditions
are given below and were derived in [9], [10]. They involve
two modes of stimulation: a longitudinal mode, which is the
conventional mode described by a classical cable equation,
and a transverse mode, which is often neglected and is
described by an ordinary differential equation in time. These
modes of stimulation are illustrated schematically in Figure 2
(see [9] for a full discussion). It should be emphasised that
our basic conclusions are unaltered if we consider only the
conventional longitudinal mode. The modes can be combined
in a Fourier series to give the total membrane potential:

VM(z, θ, t) =

∞∑
n=−∞

V̄M(z, n, t)ejnθ (3)

where

V̄M(z, n, t)=
1

2π

∫
2π

VM e−jnθ dθ. (4)

Fig. 2. Illustration of the different modes of stimulations including the
n = 0 longitudinal mode, (a) and (b), and transverse modes for (c) n = 1
and (d) n = 2. Arrows indicate the direction of current flow, dark red
indicates the extracellular space and light red the intracellular space. The
longitudinal mode involves current entering the neurite axisymmetrically
and passing along it. The transverse modes involve current passing across
the neurite. Higher order modes, e.g. n = 2, are possible but typically make
minor contributions.

Typically only the n = 0 longitudinal mode, and the n = ±1
major transverse mode make significant contribution to the
membrane potential. For these two modes we use the notation
V M(z, n = 0, t) = V

∥
M and V M(z, n = 1, t) = V ⊥

M .
We consider stimulation with symmetric biphasic current

pulses, with pulse phase duration from 10 µs to 100 ms
and no interphase gap. For pulses of these durations the
transverse mode of stimulation follows the time course of
the pulse almost instantaneously, so that we use a quasi-
stationary approximation to the ordinary differential equation
describing this mode in the following.

1) Current Density Boundary Conditions:
Longitudinal Mode:

λ2
0J

∂2V̄
∥
M

∂z2
−τM

∂V̄
∥
M

∂t
−V̄

∥
M=−2πrebλ

2
0J J̄

∥
A, (5)

in which the electrotonic length constant and the membrane
time constant are

λ2
0J , rM

re + ri
and τM , RMCM. (6)

Transverse mode:

V̄ ⊥
M =

ρeb
2

d
J̄⊥
A . (7)

The current density boundary conditions enter through
the right hand sides of equations (5) and (7) via J̄

∥
A and

J̄⊥
A . Using equation (2) and a Taylor’s expansion in the

b/h, together with equation (4), we find the longitudinal and
transverse components of the current density on the cylinder
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Fig. 3. Cylindrical model of a neurite. The inner cylinder represents the
intracellular region and the extracellular space is modeled by a thin sheath
with width d. The parameters of the model are described in Table I and
their values given in Table II.

surface:

J̄
∥
A =

IA(t)

8π

b(2z2 − h2)

(h2 + z2)
5
2

, (8a)

J̄⊥
A = −IA(t)

8π

h

(h2 + z2)
3
2

. (8b)

2) Voltage Boundary Conditions:
Longitudinal Mode:

λ2
0V

∂2V̄
∥
M

∂z2
− τM

∂V̄
∥
M

∂t
−V̄

∥
M = −λ2

0V

∂2V̄
∥
A

∂z2
, (9)

where
λ2
0V =

RM

2πari
=

rM
ri

. (10)

Note that electrotonic length constant for voltage boundary
conditions, λ0V , is larger than it counterpart for current
density boundary conditions, λ0J .

Transverse Mode:

V̄ ⊥
M = −V̄ ⊥

A (11)

Assuming b
h ≪ 1 and using Taylor series expansion, the lon-

gitudinal and transverse components of the voltage boundary
conditions are calculated to be

V̄
∥
A =

IA(t)ρt
4π(h2 + z2)1/2

(12a)

V̄ ⊥
M =

IA(t)ρt b h

8π(h2 + z2)3/2
. (12b)

Equations (5)-(12) were solved for V̄M in the z and t
Fourier domains and the resulting expressions numerically
inverse Fourier transformed in Matlab. Results were also
checked against simulations in COMSOL with discrepancy
less than a few percent (results not shown).

III. RESULTS

An example showing a comparison between the calcu-
lated membrane potential for voltage versus current density
boundary conditions is shown in Figure 4, for the case of a
biphasic pulse with 0.1 ms phase duration, 50 mA amplitude

TABLE II
MODEL PARAMETERS USED IN SIMULATIONS.

Parameter a b d CM

Value 0.325µm 0.35µm 0.025µm 1µF/cm2

Parameter RM ρi ρe ρt

Value 4.5kΩ·cm2 100Ω·cm 100Ω·cm 1000Ω·cm

and with the electrode 1000 µm distant from the neurite
(other parameters are given in Table II). For each boundary
condition the longitudinal and transverse modes are shown
separately (notice that the longitudinal mode is rotationally
symmetric around the cylinder, whereas the transverse mode
is depolarised and hyperpolarised on opposing sides of the
cylinder). The maximal depolarisation differs by nearly a
factor of 10 for the longitudinal mode and by around 50%
in the case of the transverse mode. Furthermore, for current
density boundary conditions the transverse mode is predicted
to be dominant, while for the voltage boundary conditions
the longitudinal mode is predicted to be dominant. The
predictions of the model are therefore both quantitatively and
qualitatively inconsistent.

The calculated membrane potential over a wide range of
pulse phase durations (10 µs -100 ms) and electrode-neurite
separations (1 µm - 1 mm) is compared in Figure 5 by plot-
ting the ratio of the maximal membrane potential for current
density versus voltage boundary conditions. For most choices
of separation and pulse duration there is a large discrepancy
in the maximal membrane potential between current density
and voltage boundary conditions. The maximal discrepancy
exceeds a 5-fold difference (ratio of 0.2) for separations
of 100-1000 µm and pulse durations from 100-1000 µs,
which are highly relevant to parameter ranges for many
clinical applications. Generally, it is only possible to achieve
agreement between results for current density and voltage
boundary conditions (i.e. a ratio of 1) over a narrow range of
stimulation parameters: here the parameters in Table II were
chosen such that agreement occurs in the near field (when
the electrode-neurite separation is under 1µm). Notice that
there is a region with very short pulses and large separations
for which the ratio also approaches 1 in this case.

IV. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

This paper examines the commonly adopted assumption
that presence of a neurite in a volume conductor can be ne-
glected when modelling extracellular stimulation. The results
show that omitting the neurite from the volume conductor
leads to inconsistent results, with two calculated values of
membrane potential depending on whether current density
of voltage boundary conditions are used on the surface of
the neural membrane. This discrepancy can be in the order
of several hundred percent and is present for a large range
of clinically relevant stimulation parameters.

One simple solution to this inconsistency is to restore the
isolated neurite to the volume conductor and recalculate the
extracellular potential [11], [12]. However, this ignores the
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Fig. 4. Example of a comparison of the membrane potential on the
neurite cylinders for current density versus voltage boundary conditions. The
maximal membrane potential is marked for both longitudinal and transverse
modes.

Fig. 5. Ratio of the maximal total membrane potential (longitudinal
plus transverse) for current density over voltage boundary conditions as
a function of phase duration in the biphasic pulse and electrode separation.

effect of neighbouring cells on both the local extracellular
potential and the global flow of current. These effects have
been shown to be significant using models of clustered cells
in finite element model simulations [13], [14]. However, such
simulations have limited applicability because the cellular
packing in neural tissue is extremely close, with the ex-
tracellular gap between cells been in the order of 10s of
nanometers [15]. This requires extremely small mesh sizes,
which in turn results in computations with intractably large
number of elements and nodes.

An alternative approach for the future may be to derive
a volume conductor model that properly takes these cellu-
lar effects into account. Mathematically, consistency in the
calculated membrane potential between current density and
voltage boundary conditions is obtained if and only if the

extracellular voltage is related to the extracellular current
density by the transimpedance of the neurite plus its thin
extracellular space [9]. From the transimpedance expression,
it can be seen that the conductivity of the required volume
conductor is not only anisotropic but also has non-trivial
spatial and temporal properties. The derivation of such a
volume conductor model is left to future work.
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