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Abstract— The paper presents a neural mass model that is
capable of simulating the transition to and from various forms
of paroxysmal activity such as burst suppression and epileptic
seizure-like waveforms. These events occur without changing
parameters in the model. The model is based on existing neural
mass models, with the addition of feedback of fast dynamics
to create slowly time varying parameters, or slow states. The
goal of this research is to establish a link between system
properties that modulate neural activity and the fast changing
dynamics, such as membrane potentials and firing rates that
can be manipulated using electrical stimulation. Establishing
this link is likely to be a necessary component of a closed-loop
system for feedback control of pathological neural activity.

I. INTRODUCTION

This paper introduces an augmentation to a neural mass

model of a cortical column [1], such that the model can

exhibit multiple types of neural behavior without changing

parameters. The motivation for this extension to an existing

model is to form a link between fast dynamics, of membrane

potentials and neural firing rates, and slowly changing dy-

namics that may modulate networks and lead to pathological

activity such as seizures.

To date, most neural mass models explain the transition

from normal behaviour to paroxysmal activity by manually

changing parameters (see [2], [3], for example). This ap-

proach is useful for generating hypotheses about the mech-

anisms of such events; however, it does not form a closed

model of the phenomena of interest. Recently, a few ex-

amples of neural mass models have been developed that are

capable of exhibiting spontaneous seizure-like events [4], [5]

and burst suppression [6]. Models of this kind are capable of

providing insights into the transitions from healthy to disease

states in the brain, rather then just describing specific states

by manually changing parameters. Furthermore, models of

this type provide a link between aspects of physiology that

vary slowly and influence excitability of cortical networks,

membrane potentials, and firing rates.
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D. R. Freestone, D. Nešić, A. Jafarian and D. B. Grayden are with
the NeuroEngineering Laboratory, Department of Electrical and Electronic
Engineering, and The Center for Neural Engineering, The University of
Melbourne, Parkville, VIC, Australia, 3010, and The Bionics Institute, East
Melbourne, VIC, 3002, Australia. M. J. Cook is with the Department of
Medicine and Department of Neurology, St. Vincent’s Hospital, University
of Melbourne. See http://www.neuroeng.unimelb.edu.au/ for email
addresses.

The neural mass model of Jansen and Rit [1] is one

of the most popular descriptions of the mass action of

cortical columns due to its balance between realism and

parsimony. Augmentation of this model builds upon the

existing literature to add an extra level of biological realism,

further generalizing the model. In doing so, we can explain a

richer repertoire of neural dynamics. The motivation is to use

this model for feedback control, via electrical stimulation,

of slowly varying parameters in order to prevent epileptic

seizures.

II. A STANDARD NEURAL MASS MODEL

To derive a standard neural mass model, we begin by

defining the post-synaptic potential of population n as a

result of an input firing rate from population m as their

convolution,

vn(t) =vr,n +

∫ t

−∞

αmn

τmn

hmn(t− t
′)gm(vm(t′)) dt′

(1)

vn(t)− vr,n =

∫ t

−∞

αmn

τmn

hmn(t− t
′)gm(vm(t′)) dt′ (2)

ṽn(t) =

∫ t

−∞

αmn

τmn

hmn(t− t
′)gm(vm(t′)) dt′, (3)

where αmn is the gain for the post-synaptic response kernel

denoted by hmn(t), from neural population m to n, and τmn

is the membrane time constant. Typically, αmn(t) and τmn

are constants (particularly for current-based synapses), but

we will relax this assumption. Also, gm(vm(t)) describes

the input firing rate as a function of the pre-synaptic mem-

brane potential. The resting membrane potential of the post-

synaptic population is denoted by vr,n, vn(t) is the post-

synaptic membrane potential, and ṽn(t) is the deviation of

the membrane from the resting potential. For the model of a

cortical column that we are considering, the index n (post-

synaptic) may represent either the pyramidal (p), excitatory

interneuron (spiny stellate) (e), inhibitory interneuron (i), fast

inhibitory (i1), or slow inhibitory (i2) populations.

The post-synaptic response kernel, hmn(t), typically takes

one of three different forms: one first order and two second

order. The first-order form has an instantaneous rise and a

decay defined by a single time constant. The second order

kernels have a finite rise and decay time, with the difference

being with one form having separate time constants (bi-

exponential) for the rise (synaptic time constant) and decay

(membrane time constant), whereas the other form is defined
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This neural mass maps from a mean pre-synaptic firing 
rate to a post-synaptic mean membrane potential. The terms 

using a single time constant (alpha function) by 

hmn(t) = r7(t)texp (--t-), 
Tmn 

( 4) that are usually considered parameters of the model include 
T, a, v0 , and <;. These can be set to model different neural 

where r7( t) is the Heaviside step function. Equation 4 is the 
form we shall use in this study; however, the framework 
holds for other forms. 

This convolution can conveniently be written as 

where the linear differential operator, D, is 

d2 2 d 1 
D=-+--+­

dt2 T mn dt T;,n . 

(5) 

(6) 

This allows the dynamics of the neural mass to be described 
by the differential equation, 

d
2vn(t) 2 dvn(t) 1 ~ ( ) _ D'mn ( ( )) 
--

2
-+ -----+ - 2-Vn t - --gm Vm t . (7) 

dt Tmn dt Tmn Tmn 

This second-order ODE can be written as two coupled first­
order ODEs by defining 

() 
_ dvn(t) 

Zn t - dt . (8) 

Recasting the system in this way allows formation of a state­
space model in a canonical form. This gives the system, 

dvn(t) _ ( ) 
--- -Zn t 

dt 
(9) 

dzn(t) D'mn 2 1 ~ 
-- =-gm(vm(t)) - -zn(t) - -

2
-vn(t). 

dt Tmn Tmn Tmn 
(10) 

There is a sigmoidal relationship between the mean mem­
brane potential and firing rate of each of the populations. This 
sigmoid nonlinearity may take different forms, for example, 
the cumulative density function (error function) or the logis­
tic/hyperbolic tangent. Typically, the logistic function form 
is used, defined as 

~ 1 
g(vn(t)) = (11) 

1 +exp (i:;n(t) (van - vn(t))) 
~ 1 

g (vn(t)) = (12) 
1 +exp (i:;n(t) (van+ Vrn - Vn(t))) 

1 
g ( Vn (t)) = 1 +exp ( <;n(t) (van - vn(t))) (1 3) 

where Von =Von +vrn· Note that in this formulation, we are 
absorbing the maximal firing rate, which is typically a linear 
coefficient of the sigmoid, into the PSP gain (amn). This 
removes a redundant parameter that can not be recovered 
by estimation methods. The quantities <;n and Von describe 
the slope of the sigmoid (variance of firing thresholds within 
the populations) and the mean firing threshold, respectively. 
These quantities are usually assumed to be constants, but this 
assumption will be relaxed. The parameter Von describes the 
deviation of the mean firing threshold from the mean resting 
membrane potential, which becomes our lumped threshold 
parameter. For ease of notation, we can drop the tilde 
remembering that the resting membrane potential resides 
within this term. 

populations, such as pyramidal neurons, spiny stellate cells, 
and fast and slow inhibitory interneurons (GABAa and 
GABAb). The neural populations can then be configured to 
represent the circuitry of a cortical column and networks 
of cortical columns. Contributions in this regard have been 
made by [7], [2], [l], [8] and others. An illustration of the 
model of a cortical column is shown in Figure 1. 
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Fig. 1. Model of a Cortical Column. The model shows three intercon­
nected neural masses, which are pyramidal neurons, excitatory spiny stellate 
cells, and inhibitory interneurons. The specific subtype of neural population 
is defined by the parameters that describe the post-synaptic response kernels. 

The parameters of the neural masses define the population 
type and the behavior the model exhibits. For example, for 
a certain parameter combination, we obtain a model of a 
cortical column that will generate alpha-wave type activity, 
and for another set of parameters we obtain a different model 
that will exhibit epileptic behavior. Therefore, we consider 
this neural mass as a family of models, which we define as 

x =Jg (x,s), (14) 

where x E ~2 is a state vector representing the postsynaptic 
membrane potential and its derivative, s represents system 
noise, which may be unmodeled inputs and model inaccu­
racies. The function Jg(·) describes the dynamics, where 
8 E ~4 determines the mass type and the behavior it exhibits. 
An alternative way of describing the model is 

x=J(x,8,c:) 

e =o, 
(15) 

(16) 

where parameters are now modeled as states with trivial 
dynamics. 
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Fig. 2. Neural Mass Model with Regulatory Mechanisms. The augmented neural mass model shown in the figure has a regulatory system that uses 
feedback to slowly modify the post-synaptic response kernel and the properties of the activation function. This is known as a singularly perturbed system, 
since there is a clear separation of time scales between regulatory mechanisms and the firing and membrane potential dynamics. 

Ill. AUGMENTATION OF THE NEURAL MASS MODEL 

This section describes a simple illustrative example of how 
to extend the model to capture dynamics that are important 
aspects of neurophysiology that are not adequately described 
in the existing formulation. For example, we expect the 
synaptic time constant to vary with changes in the firing rate 
of the respective neural population. This effectively changes 
the synapse from current-based to conductance-based. Fur­
thermore, we expect the threshold parameter, v0 , to vary with 
the firing rate of the neuron, where a sustained high firing 
rate should increase the threshold and reduce excitability. 
This augmented neural mass is depicted in Figure 2. These 
modifications can be realized by the additional state variables 

Cmn(t) = -/3mn(mn(t) + </>1,mn9m(vm(t)) + </>2,mnVn(t) 
(17) 

Vo,m(t) = -/mVo,m(t) + 1/Jmgm(vm(t)), (18) 

where /3 and I are decay parameters and ¢ 1,2 and 1/J 
are weight parameters. Note that the new parameters are 
constants. The slow system can be written compactly as 

O(t) = [ (mn(t) Vo,m(t) ]T 
O(t) =F(x(t), O(t)). 

(19) 

(20) 

Traditionally, investigators have been interested in the phe­
nomenology (EEG), which is the fast system, but with 
the augmented model we can now describe the important 
regulatory systems and physiology. 

IV. SIMULATION EXAMPLE 

The simulation results can be seen in Figure 3. For the 
simulation of the burst suppression activity, the parameters 
that control the feedback of the synaptic time constants 
were set to zero. Similarly, the parameters that control the 
feedback for the firing thresholds were set to zero when 
demonstrating the seizure-like events. 

As seen in Figure 3(a), the burst suppression patterns occur 
at semi-regular time intervals, that follow the oscillations in 
the threshold. The bursts begin when the threshold is in a 
trough and subside when the thresholds peak. 

Figure 3(b) shows an example of the epileptic-like events 
when feedback is added to the time constants. The spec­
trograms of the seizure-like waveform show the power is 
concentrated in a similar band to what is observed clinically. 

V. DISCUSSION AND CONCLUSION 

This paper has introduced an augmentation to the neural 
mass model of Jansen and Rit [l], such that it can exhibit 
spontaneous seizure-like waveforms and burst suppression 
activity. It is hoped that an augmentation of this form will 
facilitate a link between fast and slow systems in the brain. In 
doing so, we hope to enable closed-loop control of what was 
considered model parameters using electrical stimulation. 

The dynamical mechanisms for the changes between dif­
ferent types of activity in this model are still unknown. 
However, it appears that by adding the feedback to the time 
constants we have introduced a form of bi-stability into the 
model, where transitions to seizure-like waveforms are driven 
by noise. This is akin to other work in the literature [9], 
[10]. In contrast to this, the simulation with feedback to the 
firing threshold appears to induced a regular oscillation of 
the parameters, which then makes the discharges occur at 
semi-regular intervals. 

The burst suppression-like activity seen in our simulation 
is similar to observations in other recent work [ 11]. It is 
thought that this phenomenon is due to global processes 
that occur in the brain. Homogeneity of the patterns that 
appear across the cortex during burst suppression provides 
some indirect evidence of this conjecture. The parameter that 
would most likely reflect this in the Jansen and Rit model 
is the firing threshold (relative to the resting membrane 
potential), which would reflect ionic changes in the extra 
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Fig. 3. Simulation Results. a) and b) simulated times series with feedback on the threshold parameters and time constant, respectively. The red vertical
lines mark the intervals that are used in parts e) to h). c) and d) Slow dynamics of the parameters. e) and f) Zoomed versions of paroxysmal activity
from panels a) and b), where e) resembles burst suppression as seen in anesthesia, and f) resembles a seizure recorded with intrancranial EEG. g) and h)
Spectrograms of the paroxysmal activity.

cellular environment.

REFERENCES

[1] B. Jansen and V. Rit, “Electroencephalogram and visual evoked
potential generation in a mathematical model of coupled cortical
columns,” Biological Cybernetics, vol. 73, pp. 357–366, 1995.

[2] F. Wendling, F. Bartolomei, J. Bellanger, and P. Chauvel, “Epileptic
fast activity can be explained by a model of impaired gabaergic
dendritic inhibition,” European Journal of Neuroscience, vol. 15, no. 9,
pp. 1499–1508, 2002.

[3] M. Breakspear, J. Roberts, J. Terry, S. Rodrigues, N. Mahant, and
P. Robinson, “A unifying explanation of primary generalized seizures
through nonlinear brain modeling and bifurcation analysis,” Cerebral

Cortex, vol. 16, no. 9, pp. 1296–1313, 2006.

[4] S. Kalitzin, M. Zijlmans, G. Petkov, D. Velis, S. Claus, G. Visser,
M. Koppert, and F. Lopes da Silva, “Quantification of spontaneous
and evoked hfo’s in seeg recording and prospective for pre-surgical
diagnostics. case study,” in Engineering in Medicine and Biology

Society (EMBC), 2012 Annual International Conference of the IEEE.
IEEE, 2012, pp. 1024–1027.

[5] M. Koppert, S. Kalitzin, F. da Silva, and M. Viergever, “Plasticity-
modulated seizure dynamics for seizure termination in realistic neu-
ronal models,” Journal of Neural Engineering, vol. 8, no. 4, p. 046027,
2011.

[6] B. Foster, I. Bojak, and D. Liley, “Population based models of cortical
drug response: insights from anaesthesia,” Cognitive neurodynamics,
vol. 2, no. 4, pp. 283–296, 2008.

[7] O. David and K. Friston, “A neural mass model for meg/eeg: coupling
and neuronal dynamics,” NeuroImage, vol. 20, no. 3, pp. 1743–1755,
2003.

[8] F. L. da Silva, A. Hoek, H. Smith, and L. Zetterberg, “Model of brain
rhythmic activity,” Cybernetic, vol. 15, pp. 27–37, 1974.

[9] P. Suffczynski, S. Kalitzin, and F. H. Lopes Da Silva, “Dynamics of
non-convulsive epileptic phenomena modelled by a bistable neuronal
network.” Neuroscience, vol. 126, no. 2, pp. 467 – 484, 2004.

[10] P. Suffczynski, F, J. Parra, D. Velis, and S. Kalitzin, “Epileptic
transitions: model predictions and experimental validation.” Journal

of Clinical Neurophysiology, vol. 22, no. 5, pp. 288 – 299, 2005.
[11] S. Ching, P. Purdon, S. Vijayan, N. Kopell, and E. Brown, “A

neurophysiological–metabolic model for burst suppression,” Proceed-

ings of the National Academy of Sciences, vol. 109, no. 8, pp. 3095–
3100, 2012.

5945


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

