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Abstract— Sparse Bayesian inference methods are applied to decode

three-dimensional (3D) reach to grasp movement based on recordings

of primary motor cortical (M1) ensembles from rhesus macaque. For

three linear or nonlinear models tested, variational Bayes (VB) inference

in combination with automatic relevance determination (ARD) is used

for variable selection to avoid overfitting. The sparse Bayesian linear

regression model achieved the overall best performance across objects

and target locations. We assessed the sensitivity of M1 units in decoding
and evaluated the proximal and distal representations of joint angles
in population decoding. Our results suggest that the M1 ensembles

recorded from the precentral gyrus area carry more proximal than

distal information.

Index Terms— Sparse Bayesian inference, neural decoding, primary
motor cortex, reach-to-grasp movement

I. INTRODUCTION

We reach and grasp a cup effortlessly, but reaching and grasping

in unconstrained 3D space is a complex movement involving the

coordination of the proximal arm and distal hand. Despite many

efforts dedicated to studying how populations of neurons represent

and encode a high-dimensional kinematic space (e.g., [1], [2]), a

complete understanding of population codes of the primary motor

cortex (M1) remains unclear. A decoding approach provides a way

to gain further insight into neural codes [3]. Recently, several

groups have tried to decode 3D reach to grasp movement using

either spikes, multiunit activity, or local field potentials based on

recordings in M1 and premotor (PMd and PMv) areas [4]–[9]. In

this study, we apply three statistical models and sparse Bayesian

inference methods to decode 3D reach and grasp kinematics with

M1 neuronal ensembles. In addition, we systematically assess the

sensitivity of M1 units in decoding different (proximal vs. distal)

joints and their spatial contribution in M1 area.

II. MATERIALS AND METHODS

A. Experimental Recordings and Data

Two primates (female rhesus macaques: monkeys O and A) were

trained to reach and grasp objects with their right hand. Four objects

with five hand configurations (key grip, D-ring horizontal, D-ring

vertical, small D-ring and sphere) were presented at various target

locations in the monkey’s reaching space (Fig. 1). Each object was

presented to the monkey in a block of at least 140 trials. The

presentation order was pseudorandom so that the monkey could

not predict the object location. Each trial consisted of four different

periods: a premovement preriod; a movement period preceding the

grasp; a hold period when the monkey held the object; and a release

period when the robot retracted the object. The movement period

lasted about 500–700 ms. Each monkey was chronically implanted

with a 100-electrode microelectrode array in the arm-hand area of

Supported by NIH-NINDS Grant RO1-NS045853 (to N.G.H.) and an
Early Career Award from the Mathematical Biosciences Institute, Ohio
State University (to Z.C.). K.T. and N.G.H. are with the University of
Chicago, Chicago, IL 60637, USA. Z.C. is with the Massachusetts General
Hospital/Harvard Medical School and MIT, Cambridge, MA 02139, USA.
(Email: zhechen@mit.edu, kazutaka@uchicago.edu)

Fig. 1. An illustration of the 3D reach to grasp task for 5 objects (key grip,
D-horizontal, D-vertical, sphere, small D-ring) at 7 locations (from [2]).

M1 in the left hemisphere, contralateral to the hand they used

to grasp the objects. The array was placed parallel as close as

possible to the central sulcus. During recording sessions, signals

were amplified, filtered (0.3–7.5 kHz), and digitalized at 30 kHz.

For each channel, a threshold was set above the noise band to

sample a 1.6 ms duration of the signal waveform (48 samples). The

signal waveforms were spike sorted off-line using a semiautomated

MATLAB (MathWorks, Natick, MA) software developed in the

Hatsopoulos laboratory.

The 3D Cartesian positions of reflective markers placed on

monkey’s right forearm, wrist, hand, and fingers were recorded

using an infrared based motion capture system (Vicon: Oxford

Metrics, UK). The 3D velocities of wrist were computed based on

the marker data directly. To compute the inverse kinematics (i.e., the

joint angles from the marker positions), we used a scaled version of

a skeletal model of the arm developed using the OpenSim platform

(https://simtk.org/home/opensim). A total of 27 joint angles were

computed for their angular positions and velocities. For the fingers,

we modeled (i) flexion and extension at the carpal-metacarpal

joint of the thumb, and at the metacarpo-phalangeal joints of the

thumb/index/ring fingers, (ii) proximal interphalangeal joints of the

thumb/index/ring fingers, and (iii) abduction and adduction of the

thumb/index/ring fingers. For details of behavioral task, neural data

acquisition and kinematics, the reader is referred to [2]. Here, we

focus on the analysis on recordings from one monkey (O), in which

Nc = 44 putative M1 units were collected in one recording session.

B. Neural Decoding: Sparse Bayesian Methods

1) Variable selection: For individual sorted units, we binned

the spike trains into 40-ms bins and computed their smoothed

firing rates. Upon preliminary correlation and regression analysis

for optimal time lags between the kinematics and the spiking, we

chose [−160, 240] ms (negative/positive lag: before/after relative

to the kinematics) as the optimal range. For a total of Nc units,

we obtained a population firing rate vector with dimensionality of

10×Nc = 440. We have included all units in the encoding/decoding

analysis.

Given the large number of the input variables, it is important

to choose statistical inference methods to avoid data overfitting.

In order to use the recorded data more efficiently, instead of
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using standard cross-validation we employed the variational Bayes

(VB) inference method in combination with automatic relevance

determination (ARD) [10], [11]. The basic idea is to employ a

closed-form sparse Bayesian learning framework to prune irrelevant

input features. The hierarchical VB-ARD framework also allows us

to impose conjugate priors to derive analytic solutions.

We have tested three models (all employed by sparse Bayesian

methods): a static linear model, a linear dynamic (state-space)

model, and a nonlinear dynamic model (while gradually increasing

model complexity). In all experiments, we used 70% of the data

for inferring the model (encoding), and used the remaining 30% of

the data for decoding.

2) Static linear regression (LR) model: The standard decoding

method is a linear Gaussian model that directly relates the input

of neuronal firing rates (represented by a vector u ∈ R
m, here

m=440) to the decoded output of interest z ∈ R
n (where n denotes

the dimensionality of kinematics), which can be either Cartesian

kinematic variables or joint angles

zk = Duk + vk (1)

where k denotes the discrete time index, D denotes a time-invariant

spatial filter (with independent row vectors {Di} ∈ R
m), and v

denotes a zero mean Gaussian noise variable. Instead of using the

standard Wiener solution from linear regression, we employed a

VB solution by assuming the following probabilistic model

p(z|u,D, τ) =

n
Y

i=1

p(zi|Diu, τ) =

n
Y

i=1

N (Diu; τ−1) (2)

p(Di, τ |α) = N (0; τ−1
diag{α1, . . . , αm})Gamma(τ |a0, b0) (3)

p(αj) = Gamma(c0, d0) (j = 1, . . . , m) (4)

where τ denotes the precision parameter (inverse of variance) of the

Gaussian; α = {αj}
m
j=1 and (a0, b0) denote the hyperparameters

for the Gaussian and gamma distributions, respectively; and (c0, d0)
are the hyperprior parameters. Upon completing VB-ARD inference

in encoding, we obtained the variational posterior q(D), which was

subsequently used for decoding.

3) State space model (SSM): State space models with various

formulations have been widely used in neural encoding/decoding

(e.g., [12], [4]). Specifically, it is assumed that at each time step

k, the hidden state xk ∈ R
N is driven by the previous state and a

vector of firing rates uk from Nc units

xk = Axk−1 + Buk + wk (5)

zk = Cxk + Duk + vk (6)

where A describes the state evolution; B and C represent the influ-

ence of firing rates u on the state and output, respectively; z denotes

the predicted (Cartesian kinematics or joint angle) output; w and v

represent zero-mean Gaussian noise in the state and measurement

equations, respectively. The size of the hidden state vectors was

inferred using the VB-ARD framework, with the maximum order

of 5 (so as to reduce the computational complexity). The encoding

model was estimated from a VB-EM algorithm [10]. The matrix D

was initialized from the solution of Eq. (1). In the decoding phase,

x0 = 0 was fed into the dynamic model to iteratively compute the

output (without the need of running a Kalman filter).

4) Nonlinear Echo state network (ESN): The echo state network

(ESN) is a recurrent neural network with a large, random fixed

“reservoir” based on reservoir computing [13]. The hidden echo

state x ∈ R
N (typically N is very large) follows a state-space

nonlinear system equation

xk = f(Wxk−1 + W
in

uk + W
fb

zk) (7)

zk = W
out[xk;uk] (8)

where f is a logistic sigmoid function, W, W
in and W

fb are

fixed and random weight matrices with proper dimensions for echo

states, input, and feedback output, respectively. These matrices were

randomly initialized within [−a, a] (uniformly) with sparsity of 1%

connectivity. The scale parameter a was set to 1 and the spectral

radius of W was set to 0.8. The output weight matrix W
out was

inferred in a similar way as in the LR model.

III. RESULTS

A. Result Assessment

For decoding assessment, we used (i) the Pearson’s correlation

(between the predicted and actual variables), (ii) the mean absolute

error (MAE), and (iii) the normalized MAE (NMAE) for individual

output (scalar) variables

NMAE(z) =
mean{|zk − ẑk|}k
standard dev{z}

. (9)

Since NMAE is normalized by the SD of the output z, it is

dimensionless and invariant to the scaling of z. To assess the

importance of individual units in decoding, we computed the

importance index (II) for every unit by using a leave-one-out (loo)

decoding strategy: we used all units during the encoding phase and

decoded the output by either using all units or leaving one unit out

(i.e., setting that unit’s input as zero). The II for the c-th unit is

defined as

IIc(z) =
MAEloo(z)−MAE(z)

MAE(z)
(10)

where MAEloo denotes the new MAE by leaving the c-th unit

out. A positive value of IIc(z) implies that MAEloo > MAE

for decoding the variable z, while a negative value of IIc(z)
implies that the inclusion of the c-th unit actually hurts the decoding

performance. From {IIc}
Nc

c=1
, we further computed the II-ratio by

counting the total number of positive IIc normalized by Nc.

Furthermore, we assessed the prediction accuracy by computing

the area under the receiver operative characteristic curve (AUC)

(see [2] for the method) on the test data by using a trajectory-based

encoding model (without the spike history) similar to [1].

B. Comparison of models

1) Object-specific decoding: We applied three models described

in the Method section on the same test data. We first evaluated

the decoding results separately for different objects. In total, we

decoded 27 joint angles and six 3D Cartesian kinematic variables

(position plus velocity, where {x, y, z} represent the wrist posi-

tion in the up-down, left-right, and forward-backward directions).

Overall, the performance of Pearson’s correlation from the three

models was comparable (no significant difference); but the sparse

LR model had the overall lowest NMAE (especially in joint angles).

In addition, the decoding accuracy varied across different Cartesian

kinematic variables and joint angles and different across objects.

The correlation between the actual and decoded variables varied

between −0.30 and 0.97. Figure 2 presents an illustration of

good decoding results using a sparse LR model. Notably, decoding

accuracy is much better for the y and z coordinates than the x

coordinate (for both position and velocity). The comparison of

Pearson’s correlation among the three methods is shown in Fig.

3 and Fig. 4, for position/velocity kinematics and six selected joint
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TABLE I

Summary of NMAE performance of three methods on the wrist

Cartesian position/velocity and selected joint angles. Mean±SEM

were computed across objects. Bold font indicates the best average

performance. The first 4 joint angles are proximal and the remaining

12 angles are distal.

sparse LR sparse SSM sparse ESN

x-position 0.604± 0.039 0.659± 0.041 0.606± 0.038

y-position 0.267± 0.004 0.270± 0.023 0.261± 0.005

z-position 0.230± 0.009 0.225± 0.018 0.227± 0.009

x-velocity 0.514± 0.036 0.542± 0.046 0.579± 0.091

y-velocity 0.267± 0.007 0.299± 0.016 0.315± 0.048

z-velocity 0.256± 0.007 0.263± 0.011 0.318± 0.062

elv angle 1.254± 1.018 1.555± 1.275 2.227± 1.972

shoulder elv 0.422± 0.033 0.475± 0.044 0.554± 0.048

shoulder rot 0.529± 0.046 0.645± 0.041 0.781± 0.082

elbow flexion 1.251± 0.882 1.552± 1.168 2.203± 1.708

pro sup 0.560± 0.083 0.705± 0.138 0.709± 0.109

wrist deviation 0.485± 0.084 0.620± 0.156 0.593± 0.120

wrist flexion 1.202± 0.722 1.871± 1.224 2.156± 1.577

cmc flexion 0.707± 0.181 0.822± 0.242 1.082± 0.387

cmc abduction 0.826± 0.310 0.985± 0.436 1.346± 0.699

mp flexion 0.723± 0.107 0.970± 0.169 0.929± 0.208

ip flexion 4.560± 4.005 6.907± 6.249 7.794± 7.144

2mcp flexion 0.873± 0.366 1.410± 0.793 1.243± 0.616

2mcp abduction 0.614± 0.095 0.745± 0.119 0.739± 0.120

2mp flexion 2.966± 2.380 4.660± 3.841 4.889± 4.108

2md flexion 0.568± 0.118 1.135± 0.501 0.782± 0.187

3mcp flexion 0.717± 0.252 1.837± 0.832 1.148± 0.519
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Fig. 2. An illustration of decoding 3D reach and grasp movement to
the vertical D-ring. Pearson’s correlation r is shown in each panel. In this
example, the sparse Bayesian LR model was used, the MAE for these four
variables are 5.54 cm, 0.16 cm/s, 10.23 deg and 5.90 deg, respectively.

angles, respectively. Surprisingly, the simplest sparse Bayesian LR

model achieved relatively robust results. This was partially due to

the fact that we used a sparse Bayesian inference method: if we

instead employed a least-squares (non-sparse) solution for the LR

model, the decoding performance degraded significantly (result not

shown). Table I summarizes the NMAE results.

2) All-object decoding: Next, we tested the generalization of

the three decoders across all objects. To do this, we combined all

trials across all objects and repeated the encoding/decoding analysis

(70% training and 30% testing data). The results on the Pearson’s

correlation are summarized in Table II. As seen, the ESN achieved

the best decoding performance (highest correlation) for position

and velocity; while the sparse Bayesian LR model achieved the

best decoding performance for nearly all joint angles (correlation

varied from 0.11 to 0.87). For this reason, we used the simplest yet

robust sparse Bayesian LR model for the subsequent analysis.
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Fig. 3. Comparison of Pearson’s correlation for the wrist Cartesian position
(x, y, z) and velocity (dx, dy, dz) across objects from the three models.
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Fig. 4. Comparison of Pearson’s correlation for six selected joint angles
(left: proximal; right: distal) across objects from the three models.

C. Sensitivity of M1 Units for Decoding

To assess the contribution of individual M1 units to decoding,

we computed the II (Eq. 10) and the II-ratio. A large positive II

indicates that the unit is important for decoding. See Fig. 5 for an

illustration. Based on this criterion, we can sort the units by their

importance indices and assess their encoding properties, such as the

AUC (Fig. 5 bottom panel). Depending on the decoded variable, the

II-ratio varied between 0.36 and 0.86.

D. Joint Angles: Proximal vs. Distal Representations

Recording from a rigid electrode array during unconstrained 3D

reach-to-grasp provides an opportunity to examine the potential

spatial organization of proximal and distal movement represen-

tations across the precentral gyrus. Physiological studies based

on intracortical microstimulation (ICMS) [14] have suggested a

topographic organization across the precentral gyrus such that
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TABLE II

Summary of Pearson’s correlation of three methods in all-object

decoding. Bold font indicates the best performance.

sparse LR sparse SSM sparse ESN

x-position 0.617 0.566 0.644

y-position 0.943 0.935 0.949

z-position 0.952 0.953 0.958

x-velocity 0.712 0.711 0.733

y-velocity 0.920 0.916 0.924

z-velocity 0.932 0.930 0.940

elv angle 0.869 0.784 0.853

shoulder elv 0.823 0.746 0.735

shoulder rot 0.458 0.233 0.366

elbow flexion 0.819 0.711 0.771

pro sup 0.736 0.659 0.691

wrist deviation 0.753 0.790 0.694

wrist flexion 0.681 0.500 0.563

cmc flexion 0.578 0.431 0.482

cmc abduction 0.632 0.475 0.580

mp flexion 0.582 0.335 0.454

ip flexion 0.463 0.312 0.328

2mcp flexion 0.636 0.414 0.535

2mcp abduction 0.643 0.604 0.616

2mp flexion 0.543 0.309 0.374

2md flexion 0.110 0.043 0.093

3mcp flexion 0.159 0.104 0.112

spheresmall DD!horizD!vertkey grip

Proximal
(shoulder elv)

Distal
(cmc abduction)

Fig. 6. Object-specific Hinton diagrams of mapping population units’
importance indices onto the microelectrode array (the central sulcus is about
20-30 deg counterclockwise along the x-axis, array orientation is shown in
Fig. 7). For illustration purpose, one proximal (shoulder elevation) and one
distal (thumb finger abduction) joint angles are shown. The size of the
square is proportional to the cumulative sum of importance indices at each
channel. White/black color represents the net positive/negative value.

proximal movements of the shoulder and elbow are more often

elicited rostrally whereas distal movements of the wrist and fingers

are usually elicited caudally near the central sulcus. A population

decoding approach provides a way to explore this issue. In our

decoding analysis, the decoding accuracy of joint angles from

the shoulder and elbow (proximal) varied across objects (Fig. 4),

with the best performance for the “vertical D-ring” and “sphere”

and poor performance for the “key grip” object. In contrast, the

decoding accuracy of wrist and finger (distal) representation was

highest for the “horizontal D-ring” and lowest for the “key grip”

(Table I).

Figure 6 presents examples of Hinton diagrams of mapping 44

population units’ importance indices onto the 10-by-10 array. As

seen, the spatial patterns of proximal and distal representations var-

ied with different object-grasping movements. The spatial patterns

proximal distal

lateral

rostral medial

caudal

Fig. 7. Hinton diagrams of mapping population units’ importance indices
onto the microelectrode array in the case of all-objects decoding (with the
same notation). The II of all units were computed based on the mean
statistics of 4 proximal (center) and 8 distal (right) joint angles, respectively.
Figures 6 and 7 share the same array orientation.

of M1 ensembles derived from our decoding analysis may provide

insights into M1 population codes for object-specific reach to grasp

movement. The analysis can be similarly applied to decoding all

objects at all locations (Fig. 7). Based on our index of importance

analysis, we did not observe a strong segregation between proximal

and distal representations across the array.

IV. SUMMARY

We have applied sparse Bayesian (VB-ARD) inference methods

to decode 3D reach to grasp movements based on M1 neuronal

ensembles. The simple sparse LR model achieved the overall best

performance across objects and target locations. Based on the

decoding analysis, we assessed the sensitivity of individual M1

units and evaluated the relative decoding performance of proximal

and distal kinematic variables. Our results suggest that the M1 en-

sembles recorded from the precentral gyrus carried more proximal

than distal information and yet there was significant information of

distal joint angles from our recording site. It would be interesting

to investigate how single cell representations as well as the network

topology of the neuronal ensemble change dynamically during such

unconstrained 3D reach to grasp movements. Future work will also

examine object/location-invariant representations of M1 neuronal

ensembles [15] during reach to grasp movements.
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