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Abstract²EMG pattern classification has been widely studied 

for decoding user intent for intuitive prosthesis control. 

However, EMG signals can be easily contaminated by noise and 

disturbances, which may degrade the classification 

performance. This study aims to design a real-time self-recovery 

EMG pattern classification interface to provide reliable user 

intent recognition for multifunctional prosthetic arm control. A 

novel self-recovery module consisting of multiple sensor fault 

detectors and a fast LDA classifier retraining strategy has been 

developed to immediately recover the classification 

performance from signal disturbances. The self-recovery EMG 

pattern recognition (PR) system has been implemented on an 

embedded system as a working prototype. Experimental 

evaluation has been performed on an able-bodied subject in 

real-time to classify three arm movements while signal 

disturbances were manually introduced. The results of this 

study may propel the clinical use of EMG PR for 

multifunctional prosthetic arm control. 

I. INTRODUCTION 

LECTROMYOGRAPHIC SIGNAL (EMG) pattern recognition 

(PR) is a widely used method for classifying user intent 

for neural control of artificial limbs [1-3]. However, 

unreliability of surface EMG recordings over time is a 

challenge for applying the EMG pattern recognition 

controlled prostheses for clinical practice. Motion artifacts, 

environmental noises, sensor location shifts, user fatigue, and 

other conditions may all cause changes in the EMG 

characteristics and thus lead to inaccurate identification of 

user intent and threaten the prosthesis control reliability and 

user safety[4-5].  

Several strategies have been developed to address this 

challenge in order to make artificial limb control based on 

EMG PR clinically viable.  Sensinger et al. [5] employed 

adaptive pattern classifier to cope with variations in EMG 

signals for reliable EMG PR. Tkach et al. [6] investigated 

different EMG features and suggested several time-domain 

features that were resilience to EMG signal change caused by 

muscle fatigue and exerted force levels. Hargrove et al. [7] 

suggested a new EMG PR training procedure in order to 

accommodate EMG electrode shift during prosthesis use.  

Our research group developed a unique, reliable EMG 

pattern recognition interface, consisting of sensor fault 

detectors and a self-recovery mechanism. The sensor fault 
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detectors monitor the recordings from individual EMG 

electrodes; the self-recovery mechanism will remove the 

faulty EMG signals from the PR algorithm to recover the 

classification accuracy [8-10]. It was observed that the EMG 

classification performance was not significantly affected by 

the removal of one or two EMG signals from redundant EMG 

recordings [2, 8]. Our new EMG-PR interface could salvage 

system performance by up to 20% increased classification 

accuracy when one or more EMG signals were disturbed [8].  

While our previous study has demonstrated the concept 

of our design, the algorithm development and validation were 

tested offline. In order to implement this concept in real-time, 

especially in a wearable embedded system, several challenges 

still exist. First, the recovery strategy involves retraining of 

the pattern classifier.  Currently this procedure involves 

reorganization of training feature matrix, computation of 

parameters in the pattern classifiers, and reorganization of 

testing feature vectors. Whether or not the embedded system 

can handle this procedure quickly for each decision-making is 

unknown. Secondly, since more components are included in 

the EMG PR algorithm, communication among components 

and precise timing control is crucial. Finally, a compact 

integration of all the components in an embedded computer is 

required. The system needs to provide necessary interfaces 

for data collection, adequate computing power for real-time 

decision making, efficient memory management, and low 

power consumption. All these challenges have never been 

explored. 

  This paper presents the first real-time self-recovery 

EMG pattern recognition interface for artificial arms. A novel 

self-recovery scheme with a fast and efficient retraining 

algorithm based on linear discriminant analysis (LDA) has 

been developed. The self-recovery EMG pattern recognition 

system was implemented on an embedded computer system 

as a working prototype. The prototype was preliminarily 

evaluated on an able-bodied subject in real-time in classifying 

three arm movements while motion artifacts were manually 

introduced by randomly tapping the EMG electrodes. The 

results of this study may propel the clinical use of EMG PR 

for multifunctional prosthetic arm control. 

II. METHODS 

A. System Structure 

The overall structure of the self-recovery EMG pattern 

recognition interface is shown in Fig. 1. The system 

seamlessly integrates EMG pattern recognition with the 

self-recovery module. Multiple channels of EMG signals 
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segmented by overlapped sliding analysis windows are the 

system inputs. In each window, four time-domain (TD) 

features (mean absolute value, number of zero crossings, 

waveform length, and number of slope sign changes [11]) of 

the EMG signals are extracted from each input channel and 

fed to the self-recovery module. The sensor fault detectors 

closely monitor the key features of each EMG signal to detect 

disturbances. Based on the detection results, the EMG 

features extracted from µnormal¶ channels are concatenated 

into a feature vector as the input for pattern classification. If 

no disturbance is detected, the feature vector is directly sent to 

the classifier generated from the original training data. If one 

or more signals are determined as µabnormal¶, the fast LDA 

retraining process is triggered and the reduced feature vector 

is fed to the new classifier for pattern recognition.   

B. Fast LDA-based retraining algorithm 

Previously the lack of a fast and efficient retraining 

algorithm was the most critical challenge to the design of a 

real-time self-recovery EMG PR interface.  If the retraining 

process cannot be accomplished in a short period of time, the 

signal disturbances may impair the classification performance 

DQG� HYHQ� KDUP� WKH� SURVWKHVHV� XVHUV¶� VDIHW\�� Linear 

discriminant analysis (LDA) is a widely used method for 

EMG pattern recognition [1, 10-11]. By examining the details 

of the LDA algorithm, we developed a fast and memory 

efficient LDA retraining algorithm by making the most 

efficient use of existing information.   

The principle of the LDA-based PR strategy is to find a 

linear combination of features which separates multiple 

classes ]),1[( GgCg � . Here G denotes the total number of 

studied classes. Suppose f is the feature vector in one 

analysis window, 
gP is the mean vector of class 

gC and every 

class shares a common covariance matrix ¦ , the LDA 

function is defined as 
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During the training procedure, ¦ and 
gP are estimated 

based on the feature matrix calculated from the training data. 
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gK is the number of analysis windows in class 

gC ; 
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 is the 
thk  observed feature vector in class 

gC ; 

],...,,...,,[ ,,2,1, ggggg KCkCCCg ffffF  is the feature matrix of 

class 
gC ; ]~,...,~,~[ ggggMi PPP  is the mean matrix which 

has the same dimension as 
gF . In a feature vector 
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],...,,...,,[ 21,  , N is the total number of 

EMG input channels and 
nf denotes the four EMG features 

extracted from the 
thn  channel. 

In the previous retraining strategy [8], after the initial 

training process is done, the original EMG feature matrix is 

stored in the memory for later use in the retraining process. 

During the retraining procedure, for each class, a new EMG 

feature matrix 'gF is reorganized by removing the feature 

rows corresponding to the disturbed channels from 
gF .  The 

mean vector of each class '~
gP and the new common 

covariance matrix 6
~

' are then recalculated based on 'gF .  Our 

experimental analysis has shown that the calculation of 6
~

' is 

the most computational intensive task in the retraining 

procedure, which accounts for more than 90% of the total 

processing time. This is because for each class, a large 

amount of analysis windows are collected as the training data. 

The number of columns in 'gF may vary from several 

hundreds to a few thousands, which leads to intensive 

numerical operations in calculating 6
~

'. 

Fortunately, after closely analyzing the details of the LDA 

training algorithm, we have found that the calculation of 6
~

' 

and '~
gP can be avoided in a smart way.  The trick is, instead of 

the large feature matrix 
gF , only 

gP
~ and 6

~
 are stored in the 

memory after the initial training process is finished. 6
~

' and 

'~
gP  can be easily retrieved from  6

~
 and 

gP
~ . Fig. 2 shows an 

example of the retrieving process if a single EMG channel is 

GHWHFWHG�WR�EH�µDEQRUPDO¶. Assume there are totally 6 EMG 

channels. Each element in the mean vector is calculated by 

averaging one specific feature row in 
gF . Therefore '~

gP  can 

be obtained by taking off the four elements that are associated 

with the disturbed EMG channel from 
gP

~ . 6
~

' is constructed 

by removing the corresponding rows and columns associated 

 
Fig. 1.  System structure of the self-recovery EMG sensing interface for 

LDA-based pattern recognition. 

Fig. 2. An example of retrieving 6
~

' and '~
gP from 6

~
 and 

gP
~ when a 

single EMG channel is disturbed. The white blocks represent the elements 

associated with the disturbed channel.   
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with the disturbed channel from 6
~

and then merging the 

remaining four small matrices ( 1B , 2B , 3B , and 4B in Fig. 

2). If multiple EMG signals are disturbed, 6
~

' and '~
gP  can be 

obtained by doing the retrieving process repeatedly. 

Compared with the previous retraining algorithm which 

requires intensive numerical operations and a large memory 

space, the new strategy dramatically accelerates the retraining 

speed and is much more memory efficient.  

C. Sensor Falut Detection 

To detect individual EMG sensor abnormalities, various 

signal processing methods have been applied to sensor fault 

detection [8-10]. A detector based on Bayesian decision rule 

[8] has been proposed for accurately detecting three types of 

simulated distortions including EMG signal drift and 

saturation, additional noise in the signal, and variation of 

EMG magnitude.  An abnormality detector using Cumulative 

Sum (CUSUM) algorithm [9] has been developed to closely 

monitor the changes of EMG features for detecting sudden 

changes or gradual changes in EMG signals. 

In this study, the CUSUM detector is adopted in our 

implementation because of its computational efficiency for 

real-time processing, its high accuracy, and low false alarm 

rate in detecting motion artifacts [9-10]. Two EMG features 

including mean absolute value and number of zero crossings 

are monitored to recognize abnormal changes. Detailed 

algorithms of the CUSUM detector can be found in [9].   

D. Real-time Embedded System Implementation 

A preliminary prototype of the self-recovery EMG pattern 

recognition system was implemented on Gumstix Overo Air, 

an ARM Cortex-A8 OMAP3503 based computer-on-module 

(COM), and RoboVero, an expansion board with an ARM 

Cortex-M3 microcontroller and eight 12-bit analog-to-digital 

converters (Fig. 3). The Overo COM communicates with the 

RoboVero expansion board via two 70-pin connectors as 

shown in Fig. 3. The system implementation consists of two 

parts: the microcontroller on the RoboVero expansion board 

for data sampling and dispatching, and the Cortex-A8 

processor on the Overo COM for EMG pattern recognition. 

E. Experimental Protocol 

This study was conducted with Institutional Review Board 

(IRB) approval at the University of Rhode Island and 

informed consent of subject. One male able-bodied subject 

was recruited. Four surface EMG electrodes (MA-420-002, 

Motion Lab System Inc.) were placed around the subject's 

right forearm. An MA-300 EMG system collected four 

channels of EMG signals. The analog EMG signals were 

digitally sampled at the rate of 1000 Hz by the Gumstix 

RoboVero expansion board. The sampled data were 

segmented into overlapped analysis windows with 160 ms 

length and 20 ms increment, resulting in a new decision every 

20 ms. Three motion classes (Elbow Flexion, Elbow 

Extension, and No Movement) were investigated in this 

experiment. The experiment consisted of two sessions: 

training session, and testing session.  

The training session was conducted first to collect the 

training data and build the original classifier. The subject was 

instructed to perform one movement for about 4 seconds in 

one trial. For each movement task, three separate trials were 

collected. After the training process was done, the parameters 

of the generated classifier, as well as the mean vector for each 

class and the common covariance matrix were saved in the 

memory for later use in the testing session.  

In the real-time testing session, for each movement task, the 

subject performed the movement for about 4 seconds in four 

separate trials. Totally 12 testing trials were conducted.  In 

every trial, motion artifacts were manually introduced by 

randomly tapping the EMG electrodes with roughly equal 

strength. In the preliminary experiment, we only tapped one 

electrode at a time. To better evaluate the performance of our 

self-recovery module, two types of classification decisions 

with and without the self-recovery module were compared in 

every analysis window. 

In addition, an offline evaluation was conducted to compare 

the performance between our fast LDA retraining algorithm 

and the previous retraining strategy [8, 10] by processing the 

same dataset collected in the real-time testing session. 

III. RESULTS & DISCUSSION 

A. Performance of the Retraining Algorithm 

Table 1 summarizes the comparison between our new fast 

LDA retraining algorithm and the previous retraining 

algorithm. From the table we can see the new retraining 

algorithm was two orders of magnitude (118 times) faster 

than the previous retraining strategy and meanwhile only 

consumed less than 1% of the memory usage of the old 

strategy. Furthermore, our fast retraining algorithm only took 

less than 1 ms to generate the new classifier. This result 

makes it possible for the system to extract EMG features, 

detect signal disturbances, retrain the classifier, perform 

pattern recognition, and produce a decision seamlessly in a 

sequence within the duration of one window increment (i.e. 

20 ms). This new design and implementation clearly 

demonstrated the feasibility of a self-recovery strategy that is 

truly 'imperceptible' to users. 

B. System Performance in Real-time 

In the 12 real-time testing trials, totally 48 motion artifacts 

were introduced, among which 43 were recognized by the 

CUSUM detector and 20 caused miss classifications if our 

self-recovery was not used. All the disturbances that led to 

classification errors were successfully detected. The 

undetected disturbances were those with either small 

amplitude or short duration, which did not affect the 
 

Fig. 3.  The prototype based on Gumstix Overo Air COM and RoboVero 

expansion board. 
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classification performance. Without the self-recovery 

module, there were 277 miss classifications observed among 

5993 decisions. All these errors were caused by motion 

artifacts. Our self-recovery module eliminated 259 of them, 

resulting in a 93.5% recovery rate.  

Fig. 4 shows the real-time system performance of some 

representative testing trials. The blue line at the bottom 

demonstrates one channel of the EMG signals which was 

randomly disturbed by motion artifacts. The black line above 

is the detection results of the CUSUM detector. As seen in the 

figure, the CUSUM detector accurately recognized all five 

motion artifacts. The classification decisions without 

self-recovery are displayed by the red line. The green line 

denotes the recovered decisions. The three gray ellipses in the 

figure mark three typical cases in the experiment. Case A  

represents a situation in which the self-recovery module 

successfully eliminates the classification error caused by 

motion artifacts. This is also the most common case. B is a 

case in which the sensor fault detector identifies the 

disturbance but the retrained classifier still provides an 

incorrect decision. This may be because the disturbed EMG 

signal is critical to the recognition of this motion. Another 

case C is a situation where the disturbance does not affect the 

classification decision.    

The results of the experiment have shown the promise of a 

robust, reliable, and efficient real-time EMG pattern 

recognition interface for artificial arms. 

IV. CONCLUSIONS 

 This paper presented a real-time self-recovery EMG 

pattern recognition interface for artificial arms. The system 

seamlessly integrated EMG pattern recognition with a 

self-recovery module that could detect signal disturbances, 

retrain the classifier, and perform reliable pattern 

classification in real-time. A novel fast and efficient 

LDA-based retraining algorithm was developed and 

demonstrated the ability to immediately recover the 

classification performance from motion artifacts. The 

self-recovery EMG pattern recognition system was 

implemented on an embedded computer system as a working 

prototype. The preliminary experimental evaluation on an 

able-bodied subject showed that our system could maintain 

high accuracy in classifying three arm movements while 

motion artifacts were manually introduced. The self-recovery 

module was able to eliminate 93.5% of the miss 

classifications caused by motion artifacts. These results have 

demonstrated the feasibility of a clinically viable EMG PR 

interface for multifunctional prosthetic arm control. 
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Table 1.  Comparison between the new retraining method 

and the previous retraining method 

 New Fast Retraining Previous Retraining  

Processing time  0.55 ms (2307 windows, 3 

classes, 4 channels) 

65 ms (2307 windows, 

3 classes, 4 channels) 

Speedup 118 1 

Memory Usage 

(2307 windows, 3 

classes, 4 channels, 

4 features per 

channel) 

gP
~ :(4x4)x4 bytes=64 bytes; 

6
~

 : (4x4)x(4x4)x4 bytes  

       =1024 bytes; 

Total: 64x3+1024 

 = 1216 bytes=1.2 Kbytes 

Total size of the feature 

matrix: 

(4x4)x2307x4 bytes 

 = 147648 bytes 

 = 144.2 Kbytes 

Meet real-time 

constraints? 

Yes. No. 

 

Fig. 4. Real-time system performance of some representative testing trials. 
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