
 

  

Abstract— Current prosthetic limbs are limited by a lack of 

tactile feedback. Slip feedback is particularly important to 

inform grip. Object slip is marked by both a change in the 

normal grip force applied and a change in force tangential to 

the fingertips. In this study, we demonstrate that a new multi-

axial tactile sensor composed of gold nanoparticle strain gauges 

is able to record slip and reconstruct the X, Y, and Z forces 

incident on the sensor’s surface due to a slipping object. We 

entered the X, Y, and Z force components generated by the slip 

event into a noisy leaky integrate and fire model to simulate the 

firing responses of SA1 and FA1 afferents. We also recorded a 

uniaxial normal force input representative of tactile contact. A 

single set of SA1 model and FA1 model parameters generated 

realistic firing patterns for both the slip and normal force 

recordings. These results suggest that canonical SA1 and FA1 

afferent models could be used to generate biomimetic electrical 

stimulation patterns for both slip and touch stimuli. When used 

to activate the tactile afferents of an amputee, these electrical 

stimulation patterns could create natural and distinguishable 

slip and touch percepts for closed loop control of an upper limb 

neural prosthesis. 

I. INTRODUCTION 

Tactile input is essential for successful object 
manipulation [1]. A delicate task like gripping an egg 
requires a person to apply a force sufficiently small enough to 
avoid crushing the egg, but great enough that the egg does 
not slip. A person must receive feedback from the peripheral 
nervous system about the grip force they are applying and, in 
the instance of slip, information about the changing frictional 
force between the slipping object and the surface of the 
fingertips.  

 In an able-bodied human, tactile receptors embedded in 
the skin of the hand detect tactile stimuli and transmit the 
information to the central nervous system via their adjoined 
tactile afferents [2]. While upper limb amputees have been 
helped by prosthetic limbs, only a few prototypes have 
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attempted to incorporate tactile sensory feedback systems to 
inform internal motor control loops of the prosthesis and 
conscious perception of tactile stimuli [3–6]. Recent 
advances in neurally-controlled prosthetic limb technology 
have allowed humans to execute prosthetic hand movements 
involving the articulation of single fingers [7], but the 
incorporation of sensory feedback for closed-loop control 
remains the most challenging task. One proposed method of 
providing sensory feedback to users of an upper limb neural 
prosthesis is to outfit the prosthetic hand with tactile sensors 
and convert the output of these sensors to an electrical 
stimulation pattern used to activate the user's remaining 
tactile afferents in the upper arm. The purpose of this paper is 
to translate continuous, analog slip and contact signals from a 
sensor into a neural code consisting of a discrete series of 
action potentials, or “spikes”, that evoke the appropriate 
percept.  

Prior research on tactile feedback has been limited by the 
need for a lightweight tactile sensor with good response 
bandwidth and, in the case of slip detection, sensitivity to 
shear forces [8]. We propose the use of a new sensor 
composed of four gold nanoparticle (AuNP) strain gauges 
[9], [10]. In this sensor, differences in the relative change in 
resistance of the four sensing units can be used to determine 
the direction of an applied force. This feature allows the 
sensor to distinguish shear force from normal force, and 
therefore, differentiate a slip stimulus from a normal force 
stimulus. We believe that the sensor’s response to slip and 
touch could be used to create two distinguishable signals in 
users of neural prosthetics.  

Tactile percepts are dependent on both the spiking pattern 
of tactile afferents and the type of tactile afferents activated. 
Human glabrous skin has four types of low-threshold tactile 
afferents essential for control of the hand [1]. We will 
initially focus on two of those which, when selectively 
activated, may recreate differentiable percepts for slip and 
touch [11]. These two types of afferents are slowly adapting 
type I afferents (SA1s), which respond to local pressure 
sensations, and rapidly adapting type I afferents (FA1s), 
which respond primarily to changes in pressure [2].  

To generate physiological neural codes for FA1s and 
SA1s, the AuNP sensor’s outputs were entered into two 
variations of an integrate and fire (IF) model, a mathematical 
model used to predict neuronal spiking [12]. Each of the IF 
models predicted the firing pattern of a single tactile afferent 
type. For a given afferent type, one canonical set of IF 
parameters (tuned using a real neural data set) generated 
physiologically realistic firing patterns for the sensor 
responses to both slip and touch stimuli. These predicted  
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Fig. I: a) Diagram of the multi-axial tactile sensor. b) Top-view of the 
sensor's axisymmetric sensing element configuration. 

firing patterns could be converted to current pulse trains used 
to activate the targeted afferent type, creating the 
distinguishable percepts for touch and slip necessary for grip 
feedback. 

II. SENSOR MEASUREMENTS 

In this study, the tactile sensor used consisted of a 
polydimethylsiloxane (PDMS) protrusion to which force was 
applied and of an underlying array of four sensing AuNP 
strain gauges. These strain gauges, along with a reference 
gauge, are printed on a plastic polyimide substrate (Fig. 1, a, 
b). For NP film strain gauge sensors, the resistance of a 
gauge increases when positive strain is applied to the film 
and decreases when negative strain is applied [13]. A shear 
force applied to the sensor protrusion will result in negative 
strain on the gauge nearest the force applied and positive 
strain on the gauge directly opposite the force applied. Using 
this principle, the sensor can detect the direction of force 
applied along an axis. The reference gauge, which is located 
on the portion of the sensor that is not subject to any force, is 
used to adjust for temperature effects. 

The sensor's response to slip and touch was tested using a 
DC3K micromanipulator (Marzhauser Wetzlar, Germany) 
and an AFG force gauge (Mecmesin, UK). Sensor output is 
measured using a current loop circuit [14] and an NI-DAQ 
system. For touch trials, a probe tip attached to the 
micromanipulator applied additional normal force to the top 
of the sensor protrusion. (A baseline normal force of 120 mN 
was used to hold the sensor in place.) For slip trials, a probe 
tip with a wide, flat surface exerted a normal force onto the 
sensor protrusion. The micromanipulator drove the probe tip 
on the XY plane, tangential to the protrusion surface (Fig. 2). 
When the shear force exerted by the probe exceeded the 
traction, the probe tip slipped across the surface of the 
protrusion. Five channels of data were sampled at 1 kHz: four 
for the outputs of the strain gauges of the sensor, and one for 
the force gauge. The voltage measurements from the force 
gauge were converted to force measurements using 
preliminary calibration data, in which the analog voltage 
output was regressed against the digital force value displayed 
on the force gauge's screen during a series of normal force 
applications. 
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Fig. 2: Setup for slip trials a) Micromanipulator b) force gauge 
c) probe tip d) PDMS protrusion e) NP film in polyimide substrate 

The voltage measurements from the four sensing strain 
gauges were converted back into relative change in resistance 
values using the current and resistance values of the current 
loop circuit. The relative change in resistance of the four 
sensing units can be related to the force applied using (1), 

F =AR (1) 

where F is a 3xl vector containing [Fx, Fy, Fz], R is 4xl 
vector containing MIR, the relative change resistance of each 
strain gauge, and A is 3x4 calibration matrix. Assuming 
orthogonality of the three force axes and identical sensitivity 
of the four strain gauges, (1) can be reduced to (2), which 
comprises three simple linear regression problems, where X" 
Ys, and Zs are the calculated sensitivities in the X, Y, and Z 
directions, respectively. 

F = (LlR3 _ LlR 1)/X 
x R3 Ri s 

LlR2 LlR4 
Fy = Cp;;- R;)/Ys 

Fz = (LlR1 + LlRz + LlR3 + LlR4)1z 
Ri Rz R3 R4 s (2) 

Assuming identical sensitivity of the four strain gauges, we 
were able to reconstruct 8, the angle of the force in the XY 
plane using (3), 

8 = tan-1(('1R2 - .1R4)/ (.1R3 - .1R1)) (3) 
R2 R4 R3 Ri 

The relative change in resistance values were then regressed 
against the X and Y components of force as described in (2). 
Though the force gauge was only capable of measuring 
uniaxial force and was set to measure the force applied in the 
XY plane, normal force could be reconstructed using the 
frictional force equation ( 4 ), 

(4) 

where µ5 is the coefficient of static friction of the 
thermoplastic probe tip against the PDMS protrusion, and 
FXY is the force applied in the XY plane. The value of µs was 
estimated to 1 based on previous studies of the coefficient of 
static friction of PDMS against hydrophobic surfaces such as 
thermoplastic [15]. The relative change in resistance of all 
four strain gauges was regressed against the approximated 
normal force to calculate Z" as described in (2). 

III. TACTILE AFFERENT MODELS 

We aimed to convert the force vector F into biomimetic 
tactile afferent firing patterns that would elicit an appropriate 
percept in a prosthetic limb user. Able-bodied humans 
encode slip and touch stimuli primarily with SAls, which 
respond to local pressure sensations, and FAls, which 
transmit information on edges and vibrations from 20-100 Hz 
[1]. SAls are slowly adapting because they remain active 
during static stimuli and are slow to return to a baseline firing 
rate. Likewise, FAls are rapidly adapting because they 
respond primarily to changes in stimuli and rapidly return to 
a baseline firing rate in response to static stimuli. Given the 
adaptation characteristics of the two afferent types, firing 
patterns that emulate those of an SAl afferent result from a 
neuronal model that emphasizes force input signals, while 
firing patterns that emulate those of an FA 1 afferent are more 
dependent on force derivative input signals [16], [18] . 
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Fig. 3: System diagram of a tactile afferent model. Relative changes in resistance of the four sensing units are converted to forces in the X, Y, and Z 
directions. These force signals are differentiated with respect to time, multiplied by a weight constant, and summed to create the input to a noisy 
leaky integrate and fire model. Weight constants are adjusted differently to create a model that emulates SAi afferents, which are primarily sensitive 
to force, and a model that emulates FA! afferents, which are primarily sensitive to changes in force over time. 

A weighted sum of Fx, Fy, and Fz, their derivatives (Fx', 
Fy', Fz'), and second derivatives (Fx", Fy", Fz") with 
respect to time were entered into a variation of an IF model, 
which predicts the times at which a neuron fires. Force 
derivative signals were computed using a fourth order 
Savitzky-Golay filter with a frame size of five samples to 
smooth the data and avoid noise amplification due to 
differentiation [17]. Derivative signals were zero-padded to 
match the length of the original force signal. 

The weighted sum of the force signals and force signal 
time derivatives (nine signals in total) served as the input, 
lstim, to a noisy leaky integrate and fire model (NLIF), 
described by (5), 

dV = ~(-g(V(t) -Vzeak) + lstim(t) + lhist(t))dt +Wt (5) 

where V is the afferent's membrane potential, C is the 
membrane capacitance, g is the leak conductance, Vieak is the 
membrane resting potential, /hist is a post-spike inhibitory 
current, and Wt is a Gaussian noise term (Fig. 3). When V(t) 
reaches a set threshold value Vihresh, a spike is fired, and V(t) 
is reset to a chosen value, Vreset· hist is calculated using ( 6), 

(6) 

where h is the postspike current waveform following the 
form of a raised cosine basis function [19]. C and g can be 

restated in terms of a single variable r, the time constant of 
the "leaky integrator". In this study, Vreset and Vihreshold were 
fixed parameters set to 0 and 1, respectively, on a normalized 
voltage scale. The remaining free parameters-r, Vieak, () (the 
standard deviation of Wt), all time points of h, and the nine 
weights wrw9 for the force signal inputs-were optimized 
using a standard maximum likelihood estimation (MLE) 
procedure for NLIF models [19], in which the spike times 
predicted by the model are optimized to match those of a real 
neural spike train. Non-human primate FAl and SAl 
responses to torque stimuli from study [20] were used as 
training data for the MLE algorithm. This training data set 
contained the necessary F x, F y, and F z force inputs. 

IV. RESULTS 

The NLIF models for an SAl and FAl resulted in 
physiologically realistic spike trains for the slip and touch 
forces recorded by the sensor. Firing rates from all model 
outputs did not exceed 300 spikes per second, emulating the 
known firing behavior of tactile afferents [ 11] . For touch 
trials, the FAl model generated spikes primarily at the onset 
and termination of force, while the SAl model remained 
active throughout the force application but showed increased 
activation at the stimulus onset and termination (Fig. 4.1 ). 
These results are consistent with the established firing 

SE3 

a) ~ :::~~---·_·_· _· __ .. _·_·~~-_ .... _ ... _""_-_-_"_ ... _ .. "_.,...._ .. _ .... ~F __ ~_""~:·:·::_·-~"'1 
z 100-----------------~ 

a) .S ol-----------.,..---------1 
~-100~---------~------~ 

b) 1111 1111111111 lillllll llll Ill II II I Ill I llil 111111111111111111 
*'.i!300~ o:: 111 200 I I 

) tUI~ I I 
c :~ ·~ 100 1 1 

~-o~~~~~--~~-~~~~~~~~-~~ 

d) ~111 1 1~1 ~111 11 11 ~l ll~lllill~I 1~1111 1 1 
e) H ::~ '--'--"-'-l ~~ .,__,_~ :....,.,_,_,J &\~: • ~-"'-'-''M,___.. :_,,,__,,,,A,._._.__,,i ~'-"'-""J' ~~~~J 

0 0.5 1 1.5 2 2.5 

Time(s) 

I1~t ~I 
b) ~ -100 '""[ -------- ; --..........-

c) 

d) 

I) 

- 200-----------------~ z E 1001-----------_...._.. __ __ 
~ OL_ _________ _J_ ___ _:-........ ~--.J 

1 111 111 I 111 1111111111111111 I 1111111111 

·-
g) il~~ f~\·~~~~~~~~A~-~- ~AA~~: ~~~~A~~j 

u:::~ 0 0.5 1 1.5 

Time(s) 

SEl 
y-axis 

Fig 4.1: Sensor and model outputs to a touch stimulus that compressed the sensor 20 µm. Dotted lines indicate the onset and offset of the added normal 
force. a) Normal force calculated from sensor response to touch stimulus. b) SAi model spike train output c) SAi model output firing rated) FA! model 
spike train output e) FA! model output firing rate. Fig 4.2: Sensor and model outputs to a slip stimulus. Dotted line indicates slip onset. a-c) X, Y, and Z 
components of force, respectively, calculated from the sensor response to slip stimulus d) SAi model spike train output e) SAi model output firing rate f) 
FA! model spike train output g) FA! model output firing rate. 
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behaviors of SA1s and FA1s in response to normal forces [2]. 

The sensor’s response to slip had not been tested prior to 
this study. The sensor was able to detect slip, showing 
marked change in the direction of force in the X and Y planes 
(Fig. 4.2). The slip stimulus detected by the sensor was 
approximately 260 milliseconds in length. The spike trains 
generated by the FA1 and SA1 models based on these signals 
are consistent with previous recordings of human SA1 and 
FA1 afferents [11]. Table 1 shows the trained NLIF model 
values for w1-w3, the weights for FX, FY, and FZ, respectively, 
and w4-w6, the weights for FX’, FY’, and FZ’, respectively.  
The second derivative weights were zeros for both NLIF 
models. 

It should be noted that afferent responses to a stimulus 
vary even within an SA1 or FA1 population due to different 
receptor tunings and noise from signal transduction and 
integration. We have trained SA1 and FA1 NLIF models 
using data from a single, representative SA1 and FA1 
afferent, respectively, to create plausible generic neural 
responses to a stimulus. Though a generic neural code will 
not precisely match the temporal activation pattern of every 
SA1 or FA1, it should be representative of an average 
response within an afferent population and therefore should 
allow a prosthetic user to naturally associate the code with its 
stimulus.   

V. CONCLUSION 

The eventual goal of this research is to provide natural 
feeling tactile feedback to prosthetic limb users. Because slip 
and touch perception arises primarily from the activation of 
SA1s and FA1s, targeted electrical stimulation of these 
afferents in a biomimetic temporal pattern should elicit an 
instinctive slip or touch percept. Future human stimulation 
trials will verify whether the temporal spike patterns 
generated from our NLIF models in response to slip will be 
perceptually differentiable from the spike patterns generated 
in response to touch. 

The existing protocol does not include an NLIF model for 
rapidly adapting type II afferents (FA2s), which respond to 
the onset of stimuli and provide cues to motor programs [1]. 
This firing behavior may help inform responses to slip 
stimuli. Though the current study was limited by a lack of 
FA2 responses to three-dimensional force (which would be 
needed to tune the parameters of an FA2 NLIF model), we 
plan to incorporate an FA2 model into our stimulation 
paradigm in future research. 

Successful tactile restoration requires discriminative 
touch and slip detection for object manipulation. While touch 
detection is possible with a uniaxial sensor, slip recognition is 
greatly enhanced by a sensor that can detect changes in shear 
force along multiple axes. This creates the added challenge of 
measuring the three-dimensional stress pattern and 
converting it into a single afferent stimulation pattern. Here, 
we demonstrated that a novel type of sensor could capture a 
slip stimulus, reconstruct its FX, FY, and FZ force components, 
and convert those recorded force components to a realistic 

spike train using an NLIF model for an SA1 or FA1 afferent, 
a necessary first step toward restoration of tactile input used 
for object property exploration and motor control. 
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 w1 w2 w3 w4 w5 w6 

SA1  0.405 8.908 0.382 -0.001 0.001 5.422e-4 
FA1 1.417 2.359 0.452 -0.012 -9.912e4 0.024 

 

TABLE I. NLIF AFFERENT MODEL WEIGHTS 
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