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Abstract— The application of polysomnographic (PSG) stu-
dies for monitoring sleep activity is a multi-parametric practice
that involves a diverse group of biological signals. A suitable
preprocessing of such signals assures a more profitable feature
extraction and classification operations. Therefore, the pro-
posed preprocessing toolbox performs segmentation, filtering,
denoising, whitening and artefact removal tasks upon multi-
channel PSG recordings. In order to assess toolbox’s efficiency,
clinical experiments are conducted, as well as, quantitative
and qualitative metrics are discussed. Our findings reveal
outperforming efficiency by artefacts and noise rejection after
single-trial and multi-stage preprocessing.

I. INTRODUCTION

The polysomnogram (PSG) is a monitoring technique for
sleep structure assessment and detection of related anomalies
or disorders. Due to the gathering of multi-parametric bio-
logical signals, such as neuronal, ocular, muscular, cardiac
and respiratory; the encounter of accurate diagnosis can be
promptly conveyed by specialists [4]. By convention, PSG
recordings include a minimum of 3 electroencephalographic
(EEG), 2 electrooculographic (EOG), 1 electromyographic
(EMG), 1 electrocardiographic (ECG) and 1 respiratory
channel. Though, the present work considers an arrangement
of 6 channels as follows: EEG O2, EEG C3, Right EOG,
Left EOG, ECG and EMG submental, whereas at least one
biophysical source is required for toolbox deployment.

The development of computer-assisted or manual visual-
isation systems for sleep staging or disorders detection are
commonly distinguished by feature extraction and classifi-
cation stages [6]. Nevertheless, the presence of bodily en-
dogenous and exogenous interferences, frequently denoted as
noise and artefacts, tantalises the achievement of performant
scores in autonomous recognition and diagnosis processes.
For this reason, the introduction of a prior preprocessing
stage is proposed to enhance the original signal proper-
ties by embedded artefacts correction and noise removal,
whilst neither reduction nor expansion transformations are
invoked [10]. In addition, the introduced toolbox intends to
deal properly with the highly complex characteristics of EEG
waveforms, since non-stationarity and non-linearity assets
ground a major difference with its counterparts. Hereafter,
the preprocessing settlement makes use of sophisticated tech-
niques to ameliorate EEG attributes over platykurtic and slow
time-varying EOG signals, peaky and periodic ECG leads,
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and leptokurtic and fast time-varying EMG datastream [5].
Once, the denoising and artefact rejection tasks are fully
accomplished by the preprocessing toolbox, EEG/EOG chan-
nels are sufficiently spanned to provide valuable information
about distinctive sleep construction [11]. This condition is
expected to be applied in subsequent processing and clus-
tering courses with more gainful aftermaths, in comparison
to current approaches. In order to assess the toolbox’s
performance degree, a complete experimental framework was
prepared, regarding a clinical cohort and measurable metrics
from qualitative and quantitative perspectives [14]. Likewise,
configuration guidelines are suggested to rendezvous outper-
forming preprocessing models, given the presented toolbox’s
modules.

The present paper is organised as follows: Section II
makes a detailed description of the active modules within
the preprocessing toolbox, including employed transforma-
tion and decomposition techniques. Section III summarises
the experiment’s conditions, test subjects, constraints and
metrics; also the obtained results are discussed. Finally,
Section IV argues additional insights and remarks about the
generated results and overall preprocessing toolbox develop-
ment.

II. METHODS

The proposed PSG preprocessing toolbox strives to fulfill
two major concerns: modularity and time-efficiency. The
former stresses the distinction of system functionalities on
disjoint modules, such that, biosignal outputs correspond
to a dynamic interaction rather than fixed-sequential rules.
Thus, the attainment of partial outcomes (i.e. segmentation,
noise removal, whitening or artefacts removal) turns into a
feasible option by the overall system configuration under the
operator’s discretion. Furthermore, the preprocessing stage is
intended to be a preparation phase with restrained complex-
ity compared to subsequent signal proceedings. Therefore,
computational efficiency and optimal resolution times are
highly sought upon data representation, transformation and
rendering.

Straightforward, a detailed description of the deployed
modules is addressed. Also, some remarks about the core
algorithms are introduced, in order to discuss the prowess
and eventual downsides of toolbox’s backbone.

A. Data segmentation module

Usually, polysomnographic recordings collect the biophy-
sical activity related to an overnight period, that means 6-8
hours timeframe. From this point patient’s dataset requires to
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be segmented into fixed-size epochs, whereas the scoring sys-
tem of sleep stages is based on successive EEG/EOG-epochs
evaluation. On regard of this, the initial toolbox module aims
to fragment each PSG channel into shorter chunks of sam-
ples, considering temporal alignment, sampling frequency
and adjustable epoch length criteria. The module’s output
consists of a tridimensional array denoting data samples, time
epochs and PSG channels. Such a disruption lightens the
computational burden managed by the additional preproce-
ssing modules, as well as, facilitates EEG/EOG sleep-data
matching according to standard manuals [11].

B. Filtering module

Either rejection or enhancement of spectral components
over PSG channels can be achieved by the filtering module
application. Essentially, the module’s logic performs a can-
cellation of interference frequencies from power lines (50
and 60 Hz), i.e. notch filter. Along with bandpass filtering to
preserve the frequency ranges of particular significance for
the detection of sleep abnormalities. In general, the module
generates a quite similar data output, like that conveyed by
the segmentation module, but undesired spectrum bands are
effectively removed.

C. Whitening module

Basically, the module engages a Karhunen-Loève trans-
formation (KLT)—a.k.a. Principal Component Analysis—
characterised by the observation of correlated PSG channels
and followed by a decomposition into uncorrelated compo-
nents [10]. Accordingly, KLT arranges principal components
in function of a maximised variance basis by selecting a
subset of channels (e.g. EEG/EOG channels), which indexes
the largest contributions from the original data block [8].
The KLT-based preprocessing reaches improved spatial res-
olution, baseline correction and decorrelated observations;
whilst maximum power density and signals integrity are
attained. The latter is strongly chased in the preservation
of the original features of biological datasets. Additionally,
baseline correction takes place to subtract minor deviations
of time points from the reference level that might lead to
misinterpretations in actual signals’ amplitudes.

D. Artefacts removal module

Assuming an adequate whitening process, the correction
of embedded artefacts is supported on the well-known Blind
Source Separation (BSS) technique [12], and specifically by
Independent Component Analysis (ICA) [1]. Recalling the
biophysical nature of EEG/EOG observations, the presence
of coloured noise and non-stationary sources is foreseen.
Henceforth, ICA decomposition becomes a suitable approxi-
mation for a linear demixing of the channels, whilst differen-
tial time delays are neglected [4]. Besides, the implementa-
tion of second-order-statistics (SOS) methods stands out as a
reasonable approach for the separation of multichannel PSG
into statistically independent components [3] [5]. Taking
advantage of the whitening and temporally decorrelation
processes carried out by the previous module; AMUSE [13]

and SOBIRO [14] algorithms are adopted as BSS-SOS-
based representatives for EEG/EOG sources detachment
from neighbouring ECG and EMG activity. Attending to the
toolbox’s low complexity principle, both algorithms guar-
antee closed form solution for the separation, disregarding
iterative and time-extended computational effort [13].

E. Noise removal module

The denoising process can be tentatively applied to the raw
epochs generated by the segmentation module or onto the
outputs generated by the aforementioned units. Anyway, the
module’s elements converge in the attenuation of frequency
components that reside either in the spectrum’s bottommost
till high-regime zones, as long as slow- or fast-varying
signal properties are followed. The module’s machinery is
sustained by the Wavelet Packet Transform (WPT) [9] [7],
which defines a group of filters to produce a collection
of PSG frequency subbands at different resolution levels.
The transformation forges a shrinkage process on each
PSG epoch/channel, through the computation of approxi-
mation and detail coefficients. Given that spectral power
of non-neuronal or non-ocular activity might likely drown
EEG/EOG significant information, the WPT-based module
outperforms as an alternative filtering choice [6].

III. EXPERIMENTAL FRAMEWORK

The PSG datasets used to conduct the experiments corres-
pond to 10 male healthy subjects within (25-43) age interval,
identified as S18, S19, S20, S21, S22, S23, S25, S27, S29
and S30. Each datastream contains 6 channels denoted as:
EEG O2, EEG C3, right EOG, left EOG, ECG and EMG
simultaneously recorded with 256 Hz as sampling rate and
20 minutes time duration. The electrode montage is 10-20
system-compliant.

The performance of PSG Preprocessing Toolbox is deter-
mined by one qualitative assessment and two quantitative
metrics. A visual inspection of contaminated PSG-epochs
constitutes the qualitative evaluation, i.e. noisy and artefact-
affected epochs from 10 different patients are manually
picked. Neither random nor statistical procedures are em-
ployed for the selection of testing epochs, since strongly
distorted data samples are desired to challenge the actual
toolbox’s preprocessing capability. The two remaining met-
rics are Signal-to-Noise Ratio (SNR) [1] [3] and Root Mean
Square Error (RMSE) [6]; both of them examine artefacts-
free module’s aftermaths and question denoising module’s
behaviour. Hereafter, a specific number of epochs per channel
are drawn based on the sample size estimation method
explained in [2]. So, SNR and RMSE metrics are computed
with a confident PSG-epochs pool out of the entire dataset
population.

A. Preprocessing model

The modularity in the toolbox design leads to a limited
cluster of possible models, obtaining the full-equipped pack-
age for data transformation or at least a custom combination
of it. For the experimental work, the toolbox modules are
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aligned as Figure 1 depicts, subject to the following con-
straints.

Fig. 1. Adopted model for PSG Preprocessing Toolbox.

The data segmentation module 1© yields fixed-length and
aligned 10-second epochs for all 6 channels. The chosen
epoch length is short enough to allow the visual tagging of
artefacts and noise-affected data fragments; and long enough
to assure single-trial removal of embedded artefacts by the
BSS-SOS-based algorithms [13]. The whitening module 2©
is not deeply intervened, since temporal decorrelation and
baseline correction functions are addressed straightforward.
However, the artefacts removal module 3© is set up to execute
SOBIRO over AMUSE as blind separation method, whereas
it has previously shown to be the most performant option
for highly distorted EEG/EOG signals [14]. Additionally,
the module is particularly conceived to get rid of ECG
and EMG activity expressed as a pulse artefact over EEG
and EOG channels. Similarly, the noise removal module
4© requires a more extensive tuning process, due to the
constellation of drivers for WPT-based decomposition. Then,
Table I summarises the adopted criteria. Finally, filtering
module is overpassed from the final experimental model to
avoid the appearance of spurious spectrum components in
any of the PSG channels.

B. Results

From the 10 collected PSG recordings, 6 of them are
profoundly contaminated by colour/white Gaussian noise and
invasive artefacts, whilst 4 of them are only affected by
high-frequency noise. After applying the assembled model

TABLE I
NOISE REMOVAL MODULE SETTINGS

Criterion Argument

Levels 7
Wavelet family db4
Thresholding Soft

Threshold value SURE

to noisy and artefact-related epochs from 10 different PSG-
datasets, the following results were encountered: 6 datasets
were successfully denoised and artefact-free processed, i.e.
EEG/EOG channels were ostensibly disassociated from car-
diac or muscular activity; 4 datasets were properly denoised,
but not artefact-free processed. Nonetheless, the latter group
of preprocessed recordings requires a distinction to explain
its failure by removing the artefacts. A total of 2 datasets
are originally artefact-free from the data acquisition stage,
so only 2 recordings were slightly disjoint or failed to be
released from ECG/EMG-artefacts. The Figure 2a portrays
step-by-step a well-preprocessed EEG O2-epoch. Likewise,
Figure 2b illustrates a denoised EEG O2-epoch with remnant
presence of ECG artefacts.

With respect to the quantitative analysis, the results ob-
tained by the testing cohort are shown in Table II. The
RMSE metric exhibits a significant performance in EEG
channels, as well as, EOG measurements. Hence, average
6 dB and 5 dB residual error are generally maintained by
both group of channels, correspondingly . Such a condition
allows to infer a substantial reduction of the error component
upon biosignals by internal and external sources during data
acquisition stage. Correspondingly, the lower part of Table II
sets out the signal-to-noise ratios for both EEG and EOG
signals. Thus, SNR driver outperforms with significant values
for EEG channels, and even better quotients are obtained in
EOG channels. Accordingly, the signal-to-noise ratios cover
9− 13 dB in O2 and C3 leads, whilst right and left EOG
surpass with 17−29 dB interval. Then, SOBIRO algorithm
and WPT denoising perform a sophisticated data estimation
to guarantee appealing ratios amongst EEG/EOG signals
against distorted versions.

IV. DISCUSSION

Considering the obtained qualitative results, the proposed
preprocessing toolbox demonstrates a formidable behaviour
in noise removal task, since 10 out of 10 datasets were su-
ccessfully decontaminated from coloured and high-frequency
noise. In regard to artefacts rejection function, the toolbox
displays a moderate efficiency with 6 satisfactory artefact-
free recordings and only 2 failing datasets (the missing
2 datasets are originally artefacts dismissed). A plausible
explanation for the separation failure might correspond to
the violation of independence condition during acquisition
stage. For an appropriate sources separation, each PSG
channel must be strictly independent from the others, then a
misplaced reference electrode or loose leads might point to
this anomaly. Alternatively, the dimensional relation between
number of channels and sources is a pulling assumption
for BSS methods success. Therefore, a larger number of
channels is always a highly pursued scenario. Taking into
account the quantitative outcomes, SNR and RMSE met-
rics support the topmost toolbox’s motivation by attaining
remarkable figures in error components rejection and signal-
to-noise ratio enhancement.

Summing up, qualitative and quantitative metrics prove
the convenience of the presented preprocessing toolbox to
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Fig. 2. (a) The enclosed transients represent the successfully removed ECG artefacts in EEG O2 for S18 and (b) unsatisfactory removal of artefacts in
EEG O2 for S30.

TABLE II
RMSE AND SNR RESULTS UPON EEG/EOG CHANNELS

RMSE (dB) S18 S19 S20 S21 S22 S23 S25 S27 S29 S30

EEG O2 7.5768 8.2038 7.6409 6.6084 6.0480 4.6745 7.2099 5.7904 5.3815 5.0329
EEG C3 7.1015 7.8408 7.4977 6.5809 5.8055 5.0593 7.0251 6.9191 5.8069 5.0527
REOG 7.1116 8.2896 5.2002 4.9131 6.2430 5.1415 5.5477 7.5475 5.3013 5.9435
LEOG 7.3253 8.6010 4.6650 4.9851 5.7716 4.9524 6.5611 4.0941 5.4662 4.2674

SNR (dB) S18 S19 S20 S21 S22 S23 S25 S27 S29 S30

EEG O2 12.2688 7.9056 13.0977 8.3617 9.6807 11.8758 6.0281 10.6271 11.3378 8.9539
EEG C3 9.8238 8.4913 12.1245 9.3631 13.2425 13.7029 11.1958 9.0833 10.3479 9.0739
REOG 29.4871 14.2168 24.2674 20.9610 21.6794 16.8947 17.9017 23.4313 21.0104 25.6235
LEOG 27.8947 18.1229 24.7089 18.2550 20.6428 16.9675 19.9162 26.3425 20.6135 24.6627

engage elimination of embedded artefacts and substantial
noise removal, respectively. Thereafter, feature extraction
and classification proceedings can be more confidently con-
ducted.
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