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Abstract— Catheter ablation (CA) is increasingly employed
to treat persistent atrial fibrillation (AF), yet assessment of
procedural AF termination is still a subject of debate in the
medical community. This has motivated the development of dif-
ferent criteria based on the standard electrocardiogram (ECG)
to characterize ablation immediate effectiveness. However, most
of conventional descriptors are merely computed in one ECG
lead, thus neglecting significant information provided by the
other leads. The present study proposes a novel predictor of CA
outcome by exploiting a subset of the 12 leads in the standard
ECG. Our method predicts the need for electrical cardioversion
subsequent to CA by suitably combining two sets of multilead
features, namely, a measure of fibrillatory wave amplitude
and an index of AF spatio-temporal variability per lead.
These features are obtained on a reduced-rank approximation
determined by principal component analysis emphasizing the
highest-variance components in the multilead atrial activity
signal, and are then combined by logistic regression. On
a database of over 50 persistent AF patients, our method
provides reliable predictive measures and proves more robust
and informative than classical AF descriptors.

I. INTRODUCTION

Nowadays, atrial fibrillation (AF) is one of the most
common cardiac diseases. Catheter ablation (CA) is cur-
rently considered as a first-line therapy [1]. Nevertheless, its
action on heart substrate has not been completely clarified
yet, thus its effectiveness is not always guaranteed. Indeed,
due to uncertainty about its outcome, criteria defining the
main steps of the procedure as well as its endpoint are
quite disparate, leading to different medical protocols. All
approaches generally aim at either sinus rhythm restoration
or AF transformation into an intermediate arrhythmia, for
instance, atrial flutter. In this framework , AF termination is
sometimes not exclusively obtained by CA. Different theories
about therapy combination have been put forward. In [2] it is
stated that most patients undergoing electrical cardioversion
(CEE) after CA have recurrences. Conversely, the study
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led in [3] claims that acute AF termination by CA has no
influence over the long-term outcome, thus justifying the use
of complementary curative strategies. The main procedural
endpoints may depend on the type of AF and include
completion of a predetermined lesion set, depending on
technical choices. Some groups aim at AF termination during
ablation [4], while other rather address noninducibility of
AF following ablation [5]. In any case, there is still debate
surrounding the predictive value of such endpoints, and
various approaches are currently adopted in medical practice.
One of the most adopted strategies to restore sinus rhythm
is combining CA with CEE immediately applied after the
ablation procedure. In this context, our research puts forward
a tool able to individuate candidates to CEE after CA, i.e.,
those for whom CA did not terminate AF during the proce-
dure. This tool is based on the heart electrical content present
in standard electrocardiogram (ECG). More specifically, it
takes into account information about fibrillatory wave (f-
wave) amplitude and AF spatio-temporal variability (STV)
extracted from the rank-1 approximation to the multilead
atrial activity (AA) signal and subsequently processed by
logistic regression (LR). The proposed method enables a
more efficient prediction of acute CA success, as well as
a more detailed design of patient’s treatment protocol.

II. METHODS

A. ECG Database and Preprocessing

Fifty-one patients underwent ablation, and 3 of them
experienced a double procedure. In 37 out of the 54 proce-
dures, AF was not terminated by CA, and CEE was applied
immediately after ablation. In the remaining cases, AF was
terminated either by CA exclusively or accompanied by phar-
macological treatment in the follow-up. Stepwise CA was
performed with the aid of Prucka Cardiolab and Biosense
CARTO electrophysiology measurement systems at the Car-
diology Department, Princess Grace Hospital, Monaco. One-
minute 12-lead ECG was acquired at a sampling rate of 1
kHz at the beginning of each CA procedure. Accordingly,
54 ECG recordings have been processed in our analysis. An
example on lead V1 is illustrated in Fig. 1.

As explained in [6], [7], TQ intervals are automatically
segmented, mean-centered and concatenated so as to yield
the (L×N) matrix of the multilead AA signal:

YAA = [yAA(1),yAA(2), . . . ,yAA(N)] ∈ RL×N (1)
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Fig. 1. Example of ECG recording during AF and its fiducial points on
lead V1. Dotted boxes highlight TQ intervals subsequently concatenated to
yield the AA signal YAA in eqn. (1).

where vector yAA(n) = [y1(n),y2(n), . . . ,yL(n)]T represents
the AA signal activity recorded at a certain temporal sample
n for each ECG lead ` = 1, . . . ,L. Furthermore, a reduced
set of 8 linearly independent ECG leads is analyzed, namely,
Einthoven’s leads I and II and the precordial ones V1-V6.

B. Rank-1 Approximation by Principal Component Analysis

As mentioned in previous works [6], [7], the multilead
ECG signal can be decomposed by principal component anal-
ysis (PCA) as a linear combination of uncorrelated sources,
the so-called principal components (PCs), linked to heart
electrical phenomena. Knowing that the first source x1 retains
the highest percentage of the AA signal energy, as in [7], the
multilead AA signal can be effectively approximated using
this source only:

ŷAA(n) = m1x1(n). (2)

The dominant PC x1(n) is derived from the observed signals
by a spatial filter defined by vector m1, the maximum-
variance direction of the multivariate observation. The rank-1
truncation enhances the most descriptive component in terms
of variance, besides compression of input data. The signal
approximation in eqn. (2) is further processed to compute
some features as explained in the following sections.

C. Multivariate Amplitude and Spatio-temporal Variability

F-wave amplitude is automatically computed on each ECG
lead of the aforementioned ensemble of ŶAA by the piece-
wise cubic interpolation Hermite interpolating polynomial
(PCHIP) algorithm proposed in [7], and its mean value d` is
then obtained. F-wave amplitude is thus described by an L-
component vector d= [d1,d2, . . . ,dL] for each CA procedure.

As in the study presented in [6], AF variability is assessed
on each electrode (thus rendering ECG spatial distribution)
and on several temporal segments (so as to quantify the
degree of temporal repetitiveness) on the same subset of
surface ECG. The same tuning parameter values are set for
computing another L-component vector µµµ = [µ1,µ2, . . . ,µL],
where the `th component µ` stands for the normalized mean
square error (NMSE) of the PCA approximation to the

AA signal computed on the `th lead and averaged over all
segments.

D. Introduction to Logistic Regression

Logistic regression (LR) determines the impact of multiple
independent variables presented simultaneously to predict
membership to one of the two categories of the dependent
or response variable, with mutually exclusive levels θ and
(1− θ). LR forms a best fitting equation using maximum
likelihood, which aims at maximizing the probability of
assigning observations z to the correct category given the
fitted regression coefficients b = [b1,b2, . . . ,bL]. In our ap-
plication, z is the vector containing features computed in
each ECG lead. Such coefficients weight the contribution of
each independent variable (i.e., ECG leads ` = 1, . . . ,L) to
the response variable (i.e., CA outcome prediction). The LR
model is defined as:

LR = log
θ

1−θ
= bTz (3)

where (·)T denotes transposition. The LR score is defined
as the ratio of the probability of occurrence of an event θ

to that of nonoccurrence with level (1−θ). In our problem,
(1− θ) represents the probability of acute AF termination.
It follows that the higher the score (3), the more likely CA
procedural failure, hence the need for a complementary CEE
treatment. Unlike linear regression, there is no closed-form
expression for the estimates of model coefficients, but an
iterative procedure is needed for their computation.

E. LR of Multivariate ECG Descriptors

Application of the LR model to each of the aforemen-
tioned multivariate predictors yields the scores subsequently
exploited as classifiers to discriminate between the classes
under examination. Therefore, the model is first applied to
the vector zA = d, thus yielding the LR score:

LRA = bT
AzA. (4)

Similarly, regression of AF STV data zSTV = µµµ results in:

LRSTV = bT
STVzSTV. (5)

A further application of regression is performed on the two
multivariate predictors concatenated in a unique variable
z(A;ST), giving the score LR(A;ST) as output. In this case, the
sample vector is characterized by a 2L-component descriptor.

LR(A;STV) = bT
(A;STV)z(A;STV). (6)

F. Statistical Analysis and Prediction Quality Assessment

The categories of interest are referred to as “CEE” and
“No CEE”, and LR scores related to each class are expressed
as mean ± standard deviation. Interclass differences are
assessed by the p-value output by the unpaired Student’s t-
test under a confidence level α = 0.05. Prediction accuracy
is quantified by the area under curve (AUC) criterion. The
optimal cutoff value guaranteeing the maximum discrimina-
tion level between the two classes is reported as well. In
addition, the related maximum rates of positive and negative

5822



detections, namely, sensitivity and specificity, are indicated.
Leave-one-out cross validation (LOOCV) technique is car-
ried out so as to validate classification results. Indeed, AUC
values are computed several times by keeping a subset of
53 procedures out of 54 and thus discarding one procedure
at each iteration, computing their average value at the final
step. The same computation is repeated for the optimal cutoff
associated with the AUC index. All the aforementioned
values are reported in Table I; values corresponding to
best prediction performance are shown in bold. Finally, the
benefits of multilead analysis are demonstrated in Fig. 2.
More specifically, AUC index is determined for each value
of lead-subset size L ranging from 1 up to 8, once computed
the proposed multilead LR predictor on all 8!/((8−L)!L!)
possible lead combinations for a fixed L value. LOOCV
validation is applied as well. The minimum, maximum, and
mean AUC values over all L-lead subset combinations have
been obtained as a function of the subset dimension L.
Such analysis is performed on all scores LRA, LRSTV and
LR(A;STV).

III. RESULTS

A. Comparison with Conventional AF Descriptors

The proposed LR-based scores are compared with some
classical AF descriptors in relation with the medical therapies
examined. All numerical results are reported in Table I.
First, mean peak-to-peak amplitude on lead V1 D(V1) is
taken into account, as several studies demonstrated that it
is predictive of CA outcome [8]. In addition, sample entropy
SampEn(Ls,rs), widely regarded as a predictor of AF termi-
nation by CEE [9], is computed for all procedures. Tuning
parameters, namely, length of the sequences compared Ls
and similarity threshold rs, are set to the values proposed
in [10] for sake of comparison. Consequently, Ls is equal to
2, whereas the second parameter is a fraction of σV1 , the AA
signal standard deviation on lead V1, i.e., r1 = 0.1σV1 and
r2 = 0.2σV1 . A normalized version of the sample entropy,
i.e., the squared sample entropy (QSE), recently proposed
in [11], is also tested here under the same conditions. The
computational time TC of each algorithm is also examined
on the whole database in Table I.

B. LR Technique Analysis

The proposed method required on average no more than
3.4 seconds for processing 2 leads on an Intel R© CoreTM

2 Quad 2.66 GHz Processor running MATLAB2012a (The
MathWorks Inc.) when combining ECG features. Its execu-
tion on the whole 8-lead ensemble provides a satisfactory
trade-off between computational load and classification ac-
curacy compared with other methods. Influence of weighting
coefficients over prediction has been investigated as well.
Accordingly, for each procedure, f-wave amplitude computed
on ŶAA has been averaged over the ECG leads examined,
thus giving D8 as output [7]. The same procedure has
been repeated for STV indices obtained on each ECG lead,
whose mean valued is represented by µ8. This is equal to
attributing the same importance to all leads, according to

a uniform weighting scheme (b = 1). Furthermore, the re-
gression coefficients’ weighting action has been investigated.
More precisely, values of LR coefficients bA computed on f-
wave amplitude data only are compared with those obtained
in the first L entries of vector b(A;STV) when amplitude and
AF complexity are processed together. The same analysis
is repeated for coefficients bSTV and the last L entries of
b(A;STV) to verify how STV information provided by every
ECG lead influences prediction scores in both cases. Results
of our examination are plotted in Fig. 3, providing spatial
distribution of regression coefficients over ECG leads.
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Fig. 2. Evolution of the AUC index of the proposed LR scores LRA, LRSTV
and LR(A;STV) as function of the number of ECG leads L.

I II V1 V2 V3 V4 V5 V6
−400

−300

−200

−100

0

100

200

300

Lead

bA

b(A;STV)1...8

I II V1 V2 V3 V4 V5 V6
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Lead

bSTV

b(A;STV)9...16

Amplitude LR Coefficients STV LR Coefficients

Fig. 3. LR regression coefficients of ECG multivariate features, both in
separate and combined analysis. Left: multivariate f-wave amplitude (bA
and first 8 coefficients of b(A;STV)). Right: multivariate AF STV (bSTV and
last 8 coefficients of b(A;STV)).

IV. DISCUSSION

Our results show the superiority of LR-based scores over
conventional AF descriptors in acute CA outcome prediction.
Indeed, amplitude and STV features seem to be enhanced
when contributions computed on each lead are combined into
the LR linear combination and properly weighted by LR co-
efficients. This approach remarkably improves CA outcome
prediction and helps discriminating between successful CA
procedures from failing ones, thus followed by CEE.
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TABLE I
INTERCLASS STATISTICAL DIFFERENCE ASSESSMENT

CEE No CEE p-value AUC Sensitivity Specificity Best cutoff TC
LRA 0.78±0.20 0.48±0.27 1.98 ·10−5 0.83 0.78 0.82 0.71 5.88

LRSTV 0.78±0.20 0.48±0.25 2.32 ·10−5 0.83 0.81 0.71 0.59 22.17
LR(A;STV) 0.88±0.20 0.26±0.26 9.19 ·10−13 0.95 0.95 0.88 0.46 27.36

D(V1) 0.06±0.02 0.07±0.03 0.18 0.61 0.62 0.65 0.06 1.20
SampEn(Ls,r1) 2.78±0.18 2.77±0.26 0.82 0.49 0.35 0.82 2.87 2.96 ·103

SampEn(Ls,r2) 2.09±0.18 2.08±0.25 0.83 0.49 0.35 0.76 2.18 3.89 ·103

QSE(Ls,r1) 5.21±0.38 5.19±0.46 0.88 0.51 0.22 0.76 5.00 2.21 ·103

QSE(Ls,r2) 4.37±0.36 4.34±0.42 0.77 0.52 0.46 0.53 4.36 2.22 ·103

D8 0.04±0.02 0.03±0.02 0.41 0.62 0.51 0.71 0.03 6.63
µ8 51.45±12.18 49.36±12.31 0.56 0.53 0.40 0.71 49.46 22.13

Such a multilead strategy provides a more accurate pre-
diction than classical single-lead parameters, for instance, f-
wave mean amplitude D(V1), which is not able to underline
significant interclass differences. Similar remarks can be
made for the sample entropy and the QSE index, as its
discriminative power is considerably weak. What is more,
regardless of tuning parameters’ values, results obtained do
not match basic assumptions made in previous studies [9],
namely, correlation between low entropy values and CEE
success due to a higher degree of AF organization.

Concerning mean values of f-wave amplitude and NMSE,
(D8 and µ8, respectively), note that attributing the same
weight to all ECG leads by simply averaging their con-
tributions does not improve prediction, as no significant
differences can be observed between the “CEE” and “No
CEE” classes. It turns out that CA outcome prediction takes
benefit from multivariate data processing and classification,
provided that independent variables (i.e., ECG leads) are
properly combined, as when LR is applied.

LR coefficients are graphically interpreted in Fig. 3.
We can note that combining information does not only
selectively enhance contributions provided by certain leads
rather than others, but also that LR coefficient dispersion
is considerably lower when analyzing each set of features
separately, as quantified by standard deviation (σbA = 68.00
vs. σb(A;STV)1...8

= 159.51, and σbSTV = 0.05 vs. σb(A;STV)9...16
=

0.15). Benefits from feature combination are confirmed by
Fig. 2 as well. First, it shows that CA outcome prediction is
improved by multilead processing, as the higher the number
of leads L examined, the higher the AUC, as previously
observed in [7]. Secondly, regardless of the number of elec-
trodes L exploited, examining such ECG properties together
probably provides a more complete overview of AF activity,
which enhances classification quality. On one hand, f-wave
amplitude is predictive of CA outcome and it is strictly
correlated with AA signal energy; on the other hand, STV
quantifies the degree of regularity and temporal repetitiveness
of AF patterns, besides their spatial distribution over ECG
leads. These characteristics are quite complementary with
each other. Indeed, f-wave amplitude can effectively depict
very regular signals; conversely, sharp patterns can hamper
signal interpolation and do not render AF temporal evolution.
In contrast, NMSE-based parameters can easily capture sig-
nal diversity and are more robust to spurious peaks. However,
their descriptive power is reduced when dealing with very
regular waveforms, where it is harder to extract information

about their variability; hence the advantage of merging
knowledge about these two aspects, so as to enrich AF
characterization and improve prediction accuracy. Prediction
benefits from combining features, as also shown by the high
AUC values in Table I.

V. CONCLUSIONS
This work has put forward a novel tool for predicting the

need for CEE application subsequent to ablation, regarded
as a criterion of acute CA outcome in persistent AF. This
technique properly combines amplitude and STV measures
derived from different ECG leads and effectively predicts AF
termination by CA. The interpretation of LR coefficients re-
quires further investigation. In addition, the algorithm should
be tested on other features determined on standard ECG (e.g.,
frequency domain parameters). Despite these limitations, the
present multiple-feature framework notably improves CA
outcome prediction and helps AF characterization.
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