
  

 

Abstract-Although there have been many advances in 

electromyography (EMG) signal processing and pattern 

recognition (PR) for the control of multi-functional upper-limb 

prostheses, some the outstanding problems need to be solved 

before practical PR-based prostheses can be put into service. 

Some of these are the lack of training and deployment protocols 

and the provision of the tools required. Therefore, we present a 

preliminary procedure to personalize the prosthesis 

deployment. In the first step, we record the demographic 

information of each individual amputee person and their 

background. In the second step of the protocol, the EMG 

signals are acquired. PR algorithms and parameters will be 

chosen in the 3rd step of the protocol. In the 4th step, the best 

number of EMG sensors to achieve the maximal performance 

with a full set of gestures is identified. The final step involves 

finding the best set of movements that the amputee person can 

produce with an accuracy > 95% as well as identifying the 

movements with the worst performance, which would require 

further training. This proposed approach is validated with 2 

transradial amputees.  

I. INTRODUCTION 

HE human hand and arm are essential for a person to 

perform many daily life activities, including 

communication and interaction [1]. The loss of hand and 

wrist function after upper-limb amputation leads to 

significant disability [2].  

There have been many advances in multi-functional 

upper-limb prosthesis control, specifically using Pattern 

Recognition (PR) based systems since they offer intuitive 

control and the ability to control multiple movements 

compared to the conventional myoelectric control which 

offers a limited set of actions. However, upper-limb 

prostheses controlled with PR systems are not commercially 

available yet, due to a number of outstanding problems, such 

as force change, signal non-stationarity, electrode movement 

and arm position [3]. In this paper, we deal with the problem 

of tuning the PR system to the needs and capabilities of each 
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individual amputee. The development of appropriate 

protocols will allow clinical professionals (i.e., the 

occupational therapists and the prosthetists) to provide 

amputee people with effective configuration, training, and 

maintenance of PR-based automated prostheses [3]. 

Each amputee person is affected differently by the level of 

amputation, muscle structure left after amputation, time 

since amputation, training state, and the presence of nerve 

injury. Treating each amputee person as an individual rather 

than grouping the amputees together is important because 

each amputee person might be able to perform some 

movements with a higher performance than other amputees. 

The number of electromyography (EMG) channels needed 

to achieve maximal performance, as well as their locations, 

may well be different for each individual due to the different 

muscle structure after amputation. Therefore, each 

individual amputee’s needs should be addressed by 

optimizing the number of channels and the movements with 

maximal performance. This would be a vital development 

for the future deployment of PR-based EMG controlled 

multi-functional upper-limb prosthesis. Having a reliable 

movement subset is important for a usable system (error 

rates should be <10%) [3]. Generally speaking, if the 

performance for 10-movement-class classification problem 

is 80%, there would be 2 wrong movements in each 10, 

which may be unacceptable. Thus, finding the best 

movements that each individual amputee can perform is an 

important challenge.  

A subject–oriented approach was presented by Troncossi 

et al. [4] to guide the mechanical design of the high level 

upper-limb prosthesis. In a later study, they suggested a 

procedure [5] to guide the design of an actuated shoulder 

articulation for externally powered prostheses. However, the 

approach was for high-level amputation. No approach is 

proposed yet for transradial amputee people to guide the 

process of selecting the EMG sensor locations and the best 

movement subset. 

The current protocol for determining the control site to fit 

commercially available myoelectric prostheses involves 

looking for a superficial muscle for easy access of the 

myoelectric signal of the wrist flexor and extensor muscles 

responsible for hand opening and closing. The amputee 

person should have enough strength for activating the 

control systems as well as being able to voluntarily control 

the contraction and relaxation independently from other 

muscles. By moving the test electrode around in a medial-

lateral plane while observing the signal strength with a 

Myoelectric tester device, the clinical professional assesses 

the selection of the site [6]. However, the drawback is that, if 

 

Protocol for Site Selection and Movement Assessment for the 

Myoelectric Control of a Multi-Functional Upper-Limb Prosthesis  

Ali H. Al-Timemy, Student Member, IEEE, Javier Escudero, Member, IEEE, Guido Bugmann and 

Nicholas Outram  
 

T 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 5817



  

the subject cannot control one muscle independently from a 

second one, only one muscle control is feasible. 

Furthermore, it is difficult to apply such protocol to PR 

based systems since they offer ways to control multiple 

myoelectric sites (usually > 4) and they utilize feature 

extraction combined with multi-dimensional classifiers for 

the separation of multiple classes. 

In this paper, we propose a novel protocol for myoelectric 

site selection and movement analysis designed to optimize 

the performance for a set of movements performed by the 

amputee persons. For each individual, the number of EMG 

channels is tuned. Then, we then analyze each participant 

separately to find the movements with accuracy above 95%. 

Two transradial amputees were recruited in this study in 

order to validate the protocol and to examine the ability of 

the protocol for individual amputees. 

II. METHODOLOGY 

The steps for the proposed protocol for the myoelectric site 

selection and movement analysis and is shown in Fig.1. The 

protocol involves the following steps. 

A. Step1: Demographic information for the amputee 

persons  

This step involves acquiring the demographic information 

for each amputee person. The data recorded by the expert 

are: 1) Type of amputation; 2) Cause of amputation; 3) 

Which hand is missing; 4) Dominant hand; 5) Dimensions of 

the stump and intact-hand; 6) Time since amputation; 7) 

Type of prosthesis used; and 8) Previous and/or current job. 

As a proof of concept, two transradial amputee persons 

(A1 and A2) with unilateral amputation participated in the 

study. The 1
st
 amputee person (A1) age was 26 years old 

while amputee person (A2) age was 24 years. Both amputee 

persons had the amputation of the left hand 3 years ago as a 

result of electrical shock with right hand being the dominant 

hand. None of the amputee persons use a myoelectric 

prosthesis due to non-availability. It is worth mention that 

this step can help to decide the number of channels for each 

amputee according to the stump length of the amputee. The 

study was approved by the Human Ethics Committee of the 

Faculty of Science and Technology at Plymouth University 

and both amputee persons gave their written informed 

consent to participate in the study. The amputee persons’ 

data were collected at the Artificial Limbs and 

Rehabilitation Centers in Baghdad and Babylon, Iraq. 

B. Step 2: Signal acquisition and experimental protocol  

This step comprises the signal acquisition and recording 

experimental protocol. First, the skin of the subjects was 

cleaned with alcohol and abrasive skin preparation gel 

(NuPrep
®
, D.O. Waver and Company, USA) was applied. 

Twelve pairs of Ag/AgCl electrodes (Tyco healthcare, 

Germany) connected to a differential amplifier were placed 

around the left stump in 2 rows for A1. A2 has a short stump; 

therefore, only 10 pairs of electrodes were placed around the 

stump as suggested by the data collected in Step 1. Fig.2 

shows the stump of A1. European recommendations for 

EMG (SENIAM) [7] were followed to place the surface 

electrodes and the elbow joint was used as reference to mark 

the electrode locations. The ground reference electrode was 

placed on the Olecranon process of the Ulna for both 

amputee participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  The proposed diagram of the protocol for the amputee persons. 

 

 
 

Figure 2.  A picture showing the stump for the 1st amputee (A1). 

 

The signals were acquired with a custom-built multi-

channel EMG amplifier with a gain factor of 1000 per 

channel. The signals were sampled at a rate of 2000 Hz with 

16-bit resolution data acquisition (USB-6210, National 

Instruments) and bands-pass filtered (20-450) Hz. Also, a 

notch filter (centered at 50 Hz) was implemented for noise 

reduction. LABVIEW software (National Instruments, USA) 

was used for signal acquisition and display.  

Six movement classes were investigated in this study and 

there was an additional no-movement class which was added 

to the dataset. The movements are: Thumb Flexion (Th. F.), 

Index Flexion (Ind. F.), Fine Pinch (Fine P.), Tripod Grip, 

Hook Grip, and Spherical Grip (Sph. G.) 

The amputees were asked to produce a constant, non-

fatiguing contraction with moderate force and hold the 

position for 8 seconds for each movement. Six trails were 

recorded for each movement. Trials 1-3 were used for the 

training whereas trials 4-6 were combined to produce the 

testing set which was used evaluate the classification 

accuracy.  

C. Step 3: Selection of the PR based EMG control  

The MATLAB
®
 2011a software (Mathworks, USA) is 

used to perform PR analysis in this study. An overlapped 
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segmentation scheme is used with 160 ms segment length 

and 50 ms segment overlap. Time Domain (TD) features [3] 

are used for feature extraction (mean absolute value, 

waveform length, zero crossings and slope sign changes). A 

Support Vector Machine (SVM) [8] classifier is used since it 

is a state-of-the-art technique that works well in high 

dimensional spaces by searching for a hyper-plane with the 

largest margin to classify different datasets [9]. It also 

supports multiclass classification using the “one versus one" 

procedure to perform the classification 

D. Step 4: Identification of the best number of channels 

and their location  

Channel optimization is applied empirically [10-12] to find 

the best subset of EMG channels that achieve maximal 

performance for each individual amputee. This finds out 

which subset of channels provides the best trade-off between 

accuracy and number of channels for each participant. For 

every iteration of the channel optimization, the classification 

accuracy is calculated after eliminating one EMG channel at 

a time. Afterward, the channel that has the least effect on the 

performance is removed. This approach is applied for 2 

transradial amputees who performed 7 movement classes. 

E. Step 5: Movements’ assessment 

The movement assessment involves performing the 

classification of all movements with the best EMG channels 

identified from Step 4 of the protocol for a particular 

amputee person. The objective is to find the best set of 

movements that each amputee can achieve with the lowest 

error. This is defined as an acceptable level of error. For a 

proof of concept, the error level of (<5%) is adopted in this 

study. 

Several iterations are performed to find the best set of 

movements. The classification accuracy is calculated for all 

movements in each step. Then, the errors for all movements 

are examined individually. The movement with the highest 

level of error is identified and removed from the set of 

movements. This procedure is repeated until a set of 

movements with an average error below a predefined 

acceptable threshold is obtained.  

F. The recommendations 

After step 5 of the optimization, a set of recommendations 

is concluded for each amputee person with the objective of 

helping the clinical professional to fit the prosthesis. The set 

of recommendations contains the following: 

1) The number of the best EMG channels’ subset. 

2) The location for those EMG channels. 

3) The movements that can be achieved with an error lower 

the acceptable error. 

4) The movements that could be achieved with an error 

higher the acceptable error. 

III. RESULTS AND DISCUSSION 

Fig. 3 displays the results of step 4 of the protocol for 

amputee person A2 showing the best number of channels. 

Five channels gave same performance as the whole set of ten 

EMG channels. Fig. 4 illustrates the location of the optimal 

5 channels’ subset for the same amputee person (shown in 

black). 
 

 
Figure. 3.  The results of A2 for step 4 of the protocol, it shows the 

classification accuracy for different number of EMG channels. 

 

As for A1, the performance was different. Seven channels 

was the best subset that gave a similar performance to the 

whole set of 12 channels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.  The optimal 5 EMG channel locations for amputee person A2 

(shown in black). 

 

In Fig.5, the classification accuracy for different iterations 

is presented for the 5
th

 step of the proposed protocol. As it 

can be seen, three iterations were performed for A1 while 

only 2 iterations of step 5 were needed for A2 to achieve an 

overall error of less than 5%.  

An important advantage of this step is that it identifies the 

movements with the lowest performance for each individual 

amputee person. This will help the rehabilitation personnel 

to perform the rehabilitation process on these movements 

and to deliver a subject-specific movement rehabilitation 

scheme for the amputee person.  

An example of the 5
th

 step of movement assessment for 

the 2
nd

 amputee (A2) is shown in Fig. 6. The figure displays 

the confusion matrix for iteration 1 of the optimization 

process. In that iteration, index flexion was the movement 

with the highest error (11.6%). Therefore, it was discarded. 

The overall accuracy for the second iteration was 95.8% 

after removing index flexion from the movement set.  

A summary of the recommendations of the protocol for 

control site selection and movement assessment for 2 

amputee persons is shown in Table 1. 
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Unlike Troncossi et al.[4], whose approach can be used to 

determine a limited selection of prosthesis architectures 

sutiable to meet the amputee’s needs with high level of 

amputation, we presented a protocol which can be used to 

tune the EMG channels as well as best movement subset 

based on each individual transradial amputee. In addition, 

this approach was validated on 2 transdarail amputees 

whereas Troncossi et al.[4] did not valdiate their protocol on 

high-level amputes.  

 

 
Figure 5.  Classification accuracy for each iteration of step 5 of the protocol 

for the 2 amputee participants (A1, shown in black and A2, shown in red). 

 

Table 1. Summary of recommendations of the protocol for A1 and A2. 

Amputee 

Person 

ID 

Whole set 

of channels 

Optima

l subset 

Movements with high 

accuracy 

A1 12 7 Th. F., Fine P., Tripod G. 

and Hook G. 

A2 10 5 Th. F., Fine P., Tripod 

G., Hook G. and Sph. G. 

 

In Conclusion, we have presented a proof-of-concept 

procedure for a subject-specific protocol for control site 

selection and movement assessment with PR systems. It 

optimizes the performance for a set of movements done by 

the amputee persons. For each individual, the number of 

EMG channels is tuned. We then analyze each participant 

separately to find the movements with accuracy above 95%. 

The results showed that each amputee is different, in terms 

of the number of EMG channels that achieved the optimal 

performance and the number of movements that could be 

classified with an error less than 5%. Despite this challenge, 

the results suggest that the proposed procedure might be a 

very valuable methodological approach to help in the 

personalization of upper-limb prostheses. The inter-subject 

variability on a large scale will be explored in a future work. 
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Figure 6.  Confusion matrix for A2 participant for iteration 1 of step 

5of the protocol. The overall accuracy for 7 movement classes was 

accuracy 93.6%.  
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