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Abstract— Phase synchrony is a powerful amplitude-
independent measure that quantifies linear and nonlinear dy-
namics between non-stationary signals. It has been widely used
in a variety of disciplines including neural science and cognitive
psychology. Current time-varying phase estimation uses either
the Hilbert transform or the complex wavelet transform of the
signals. This paper exploits the concept of phase synchrony
as a mean to discriminate face processing from the processing
of a simple control stimulus. Dependencies between channel
locations were assessed for two separate conditions elicited
by distinct pictures (representing a human face and a Gabor
patch), both flickering at a rate of 17.5 Hz. Statistical analysis is
performed using the Kolmogorov-Smirnov test. Moreover, the
phase synchrony measure used is compared with a measure of
association that has been previously applied in the same context:
the generalized measure of association (GMA). Results show
that although phase synchrony works well in revealing regions
of high synchronization, and therefore achieves an acceptable
level of discriminability, this comes at the expense of sacrificing
time resolution.

I. INTRODUCTION

The human brain is a massively complex system where

billions of neurons and neural ensembles interconnect in a

vast intricate network. It is the interaction between different

brainregions thatenables informationprocessingandtherefore,

accomplishing complex tasks. In the past decades, considerable

research has been directed towards exploring the brain con-

nectivity in order to deepen the understanding of its cognitive

processes [1], [2]. It has been also proved that brain areas

which are coactive during cognition are most likely interde-

pendent [3], which motivates using measures of dependence to

detect functional interactions between these areas. Meanwhile,

non-invasive techniques such as functional neuroimaging and

electroencephalography (EEG) have made it possible to record

the activity of human brain, and further help probe the brain

dynamics during cognition. Electrophysiological signals have

the distinct advantage of providing a particularly high time

resolution, and enable exploring brain dynamics at small time

scales. A previous study in our lab has shown that it is

possible to discriminate two cognitive states in statistical terms,

using dependence values estimated from processed scalp EEG

signals [4]. The employed measures of dependence include

linear measures such as cross-correlation [5], [6] or nonlinear

measures suchasmutual information [7], [8], besides a recently

introduced measure that was termed generalized measure of
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association (GMA) [9], [10]. In addition to the aforemen-

tioned measures of dependence, we propose to apply a widely

used concept that has been used to detect synchronizations

in brain signals: phase synchrony [11], [12]. The reason

phase synchrony seems particularly well suited for this work is

that our ssVEP methodology focuses on a single frequency

and the EEG is bandpass filtered around this frequency for

further processing. This enables extracting the instantaneous

phase and further studying the phase synchronization between

pairs of signals from different recording sites. In this paper,

we show how the performance of phase synchrony, in terms

of discriminating two cognitive states, compares with that of

GMA, a measure of statistical dependence that characterizes

functional interactions in brain networks.

The rest of the paper is divided into the following sec-

tions. In section II, we briefly outline GMA which has

been previously applied to estimate functional dependencies

between different recording sites. Section III describes the

methodology applied in this paper, including the signal

processing approach and the phase synchrony measure. Sim-

ulations using the phase synchrony measure on EEG data

are performed in section IV, and are further compared to

the simulation results carried out using GMA. Section V

provides a discussion and conclusion.

II. GENERALIZED MEASURE OF ASSOCIATION

The generalized measure of association or GMA is a

promising dependence measure that enjoys the benefits of

having no free parameters and being capable of capturing

nonlinear interactions between two variables. The traditional

association between two random variables usually tries to

estimate how much large values on one random variable

can be associated with large values on the other. GMA has

generalized this concept by considering the distance between

realizations instead of their absolute values. It computes

a distribution of ranks based on the closeness between

realizations, and then uses the skewness of that distribution

to quantify dependence. A simple way of capturing the

skewness of the ranks random variable is to calculate the

area under its empirical cumulative distribution function. The

steps of computing GMA between two time series have been

thoroughly described in previous publications [4], [9].

GMA satisfies the boundedness and invariance properties

of a measure of association, and is not necessarily symmetric.

GMA assumes values between 0.5 and 1. Two independent

random variables will cause the ranks to be uniformly

distributed, and a GMA value close to 0.5 is obtained in

that case. On the other hand, in the case of highly dependent

random variables, GMA is closer to 1. Unlike other measures
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of dependence, it is parameter-free, and has the ability to

compute association between two variables defined on two

different metric spaces.

III. METHODOLOGY

A. Signal Processing

We use the same EEG data obtained from the experiment

described in [4]. In the experiment, the electrode net of 129-

channel Hydro-Cell Geodesic Sensor Net (HCGSN) [13]

was applied, and the recordings were continuously made

using Cz as the recording reference. Steady-state evoked po-

tentials (ssVEPs) were generated by flickering visual stimuli

with a frequency at 17.5 Hz in front of a human subject.

An image of a neutral human face was presented to the

subject on a monitor, and the same procedure was repeated

with a control stimulus showing a Gabor patch. Both images

were matched for luminance, average contrast and mean

spatial frequency, to preclude systematic differences with

respect to these parameters. Epochs of 4200 ms after stimulus

onset were extracted from the recorded signals. For the two

conditions, a total of 15 trials were performed. The EEG data

was collected with a sampling rate of 1000 Hz.

Since the frequency response of the EEG data displays

strong noise components at 60 Hz and its odd harmonics

(180 Hz and 300 Hz), notch filters were used to process the

signals, and they were then fed to a band-pass filter to extract

the narrow frequency band of interest. The filter’s order and

quality factor were chosen from a set of values proven to

maximize the discriminability between the two conditions

[9]. In this paper, we use a 150-order filter with a quality

factor equal to 1.5.

B. Phase Synchrony Measure

Phase synchrony is defined as the process by which two

oscillators tend to repeat a sequence of relative phase angles

with independent amplitudes. In order to measure the phase

synchrony between two signals, the instantaneous phase of

each signal has to be estimated around the frequency of

interest. The two mostly used approaches to extract the

instantaneous phase of the signal are the Hilbert transform

and the complex wavelet transform [14]. Both methods try

to express the signal in the form x(t,ω) = a(t)exp( j(ωt +
φ(t))), where a(t) refers to the instantaneous amplitude and

φ(t) refers to the instantaneous phase at the frequency of

interest ω . The formulation can be repeated for different

frequencies to obtain a time and frequency dependent phase

estimation.

Once the phase difference between two signals is es-

timated, it becomes possible to quantify the amount of

synchrony. Here, we use the phase synchronization index to

quantify the synchrony based on the relative phase difference.

This index is also known as “phase-locking value” or PLV,

and can be defined over the time series using the following

average:

PLV (t) =
∣

∣

∣∑
N

n=1
exp( jθ(t,n))

∣

∣

∣
(1)

where θ(t,n) is the time-varying phase difference between

two signals for the nth trial which is equal to φ1(t)−φ2(t),

and N is the number of trials. If the phase difference varies

little across the trials, PLV is close to 1 indicating a pair of

signals with higher phase synchrony.

In this paper, we extract the phase information of the signal

from its wavelet transform, which is the convolution of the

signal with a complex wavelet. To simplify the calculation,

we compute the product of the Fourier transform of the signal

with the wavelet generated in frequency domain. A Morlet

wavelet is chosen for this analysis, because of the good

balance it offers between the time and frequency localization.

It can be expressed in the frequency domain as follows:

g f0( f ) = A · exp

(

( f − f0)
2

2σ2
f

)

(2)

where σ f =
f0
m

, A = 1√
σ f ·
√

π
, σ f is the width of the wavelet

in the frequency domain, and f0 is the center frequency

of the wavelet. m should be selected carefully to achieve

good time and frequency resolution in the frequency band

of our interest. The m-value is usually greater than 5 and

is suggested to be 7 according to Grossman et al. [15]. In

this paper, the m-value is chosen with the discriminability

between the two stimuli conditions in mind, the latter being

evaluated with the result of the Kolmogorov-Smirnov test.

The KS-test is applied by scanning different m-values (from

5 to 12) on the EEG time series windowed by 228 ms.

Results show that m = 9 gives the best tradeoff between time

and frequency resolutions, and thus better discriminates the

face and Gabor patch condition. Therefore, a value of m = 9

was picked in our simulations with a wavelet width of 2 Hz in

the frequency domain. Assume Wx(t,ω) to be the convolution

of the signal x with the wavelet, then:

Wx(t,ω) = a(t)exp( j(ωt +φ(t))) (3)

where a(t) is the time-varying instantaneous amplitude and

φ(t) is the instantaneous phase at the frequency of interest

ω . Then the phase difference between two signals x1(t) and

x2(t) can be computed by:

φ12(t,ω) = arg

(

W1(t,ω) ·W ∗2 (t,ω)

|W1(t,ω)| · |W2(t,ω)|

)

(4)

Thus, according to (1), the PLV can be further calculated

using:

PLV12(t,ω) =
1

N

∣

∣

∣

∣

∑
N

n=1

W1(t,ω) ·W ∗2 (t,ω)

|W1(t,ω)| · |W2(t,ω)|

∣

∣

∣

∣

(5)

This calculation procedure can be repeated for all pairs

of channels and at several frequencies to study the phase

synchrony between channels over a broader frequency range.

IV. SIMULATIONS

We apply the methodology described in the previous

section on our problem. We first use time windows of

228 ms, or 228 samples. This duration corresponds to four

cycles of a 17.5 Hz sinusoid and accommodates a scenario

where a relatively high time resolution is needed, while still

having enough samples for dependence computation. The
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Fig. 1. The averaged phase-locking values between the reference channel
and all the other channels for the Face condition (a) and Gabor condition
(b). Whole time series were used to calculate the PLVs.

phase-locking values between channels are calculated and

used to discriminate the two conditions. This procedure is

repeated for several frequencies by using Morlet wavelets

centered within the [12.5,22.5] Hz frequency range, with

a step-size of 1 Hz. As already mentioned, this enables

exploring a wider frequency range and further studying

phase synchronization between different channel locations

in both time and frequency. We also propose to apply the

same methodology using the whole time series to further

investigate its performance when more samples are available

for computation.

Channel 72 in the 129-channel HCGSN system (or POz)

is selected as a channel of particular interest. The rationale

for this choice is that this is a central channel located in the

occipito-parietal region where most of the ssVEP power is

localized. Fig. 1 shows the averaged phase-locking values

between channel 72 and all the other channels for the two

conditions. Here, the phase-locking values are calculated by

using the wavelet centered at 17.5 Hz on the whole time

series without partitioning the series into smaller windows.

A. Statistical Analysis

To assess the synchrony maps quantitatively, we use the

two-sample KS-test for statistical analysis. The two-sample

KS-test is a non-parametric test that compares the cumulative

distributions of two data sets. It reports the maximum vertical

deviation between the two cumulative distributions which

is known as KS statistic and calculates a p-value from the

KS statistic and the sample size. The null hypothesis of the

KS-test is that both groups were sampled from populations

with identical distributions. If the p-value is smaller than a

specified significance level, it could be concluded that the

two groups were sampled from populations with different

distributions. Here, we choose the significance level to be

0.05, and then apply the KS-test on the phase-locking values

corresponding to the two conditions calculated by applying

different wavelets on the 228 ms time windows. Results show

that only the wavelet centered at 17.5 and 18.5 Hz could

discriminate the two conditions. Meanwhile, the wavelet

centered at the flickering frequency 17.5 Hz achieves the best

discriminability with a p-value equal to 0.0058 and a KS test

statistic of 0.2093, which coincides with our expectations.

We further apply the same wavelet processing on the

whole time series of 4200 samples, and then calculate the

phase-locking values for every pair of channels. Results

of the KS-test show that the phase synchrony measure

implemented on the whole time series outperforms in dis-
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Fig. 2. Empirical cumulative distribution functions (CDFs) computed from
PLVs across the 129 channel pairs per condition on the whole time series.

criminability the one using 228 ms windows, for almost all

of the wavelets centered in the frequency range [12.5,22.5]
Hz. Further, the p-value drops to a near-zero value of

1.8×10−5 when using a wavelet centered at 17.5 Hz. This

outperformance comes at the expense of the reduced time

resolution. Furthermore, we plot the empirical cumulative

distribution functions (CDFs) of the phase-locking values

calculated on the whole time series using the Morlet wavelet

centered at 17.5 Hz per condition, as shown in Fig. 2.

No intersections can be observed between the two curves,

which is an indicator of a good separability. Theoretically,

we expect signals recorded for the Face stimulus to be

more synchronized than those of the Gabor patch condition.

Since the cumulative distribution function of the PLVs for

the Gabor patch condition increases faster than that for

face condition at the smaller PLV range, and slower at the

larger PLV range, the PLVs between channels for the Gabor

patch stimulus condition is mainly distributed at a small

numeric range. Thus, the signals recorded for the Gabor

patch condition are less synchronized than those for the Face

stimulus, which confirms our expectations.

B. Time-Frequency Analysis

As discussed, we use wavelets centered at different fre-

quencies, resulting in frequency-dependent phase-locking

values. The time-varying phase-locking values recorded be-

tween the reference channel and a specified channel can be

seen in Fig.3. Channel 76 is located in the occipital zone and

very close to the reference channel site, while channel 78 is

in the parietal zone which is farther from POz than 76.

It can be seen from Fig. 3 that more synchronization

between different electrode sites is present near the flickering

frequency of 17.5 Hz. Fig. 3 (a) also suggests higher phase

synchronization at 12.5 Hz, 13.5 Hz and even 21.5 Hz,

which fall outside the anticipated frequency range for high

phase synchronization, given the bandwidth of the wavelet

used was 2 Hz. Since the two channels under consideration

(76 and 72) are within close proximity, the higher PLV

values can be explained by spurious synchrony due to volume

conduction [11]. Corresponding spurious synchrony does not

appear on channel 78 because of its farther distance from 72.

Fig. 3 also shows that the phase-locking values fluctuate

along the time series, especially towards the beginning and

the end. To evaluate the stability of the computed values,

we further average the PLVs across time windows of 228

ms. Results shows that the obtained PLVs reside within 0.2,

which reflects a relative stability in time.
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Fig. 3. Time-varying phase-locking values (a) between channel 76 and
the reference channel, (b) between channel 78 and the reference channel
calculated on the whole time series for Face condition.

C. Comparison with GMA

Fig.4 shows the empirical cumulative distributions per

condition for GMA and phase synchrony when applied

on 114 ms time window, which has been previously used

with other measures of dependence. GMA discriminates the

two conditions distinctly, whereas phase synchrony does not

achieve satisfactory discrimination between the conditions.

The KS-test statistic for GMA is 0.9125, which also performs

well among other dependence measures. However, phase

synchrony breaks down using 114 ms time windows, which

suggests the need for more samples when estimating the

instantaneous phase quantities. As a result, applying phase

synchrony to detect dependencies with a higher time resolu-

tion achieved a worse performance than GMA.
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Fig. 4. Empirical cumulative distribution functions (CDFs) generated from
dependency values computed per condition using 114 ms time windows
across the 129 channel pairs for: (a) GMA, (b) phase synchrony.

V. CONCLUSION

In this paper, we addressed the problem of discrimi-

nating two cognitive states by measuring phase synchrony

between EEG recording sites. We further compared the

obtained results to those previously obtained using other

measures of dependence. The proposed method achieves

good performance when discriminating the two conditions

of interest, especially when the phase-locking values are

calculated using the whole time series. We also perform a

time-frequency analysis and examine the stability of phase

synchrony. We can conclude that phase synchrony was able

to reveal dependencies between different EEG channels,

which can be mapped to functional interactions between

the underlying brain regions. Moreover, by comparing the

performance of the phase synchrony measure and GMA,

we conclude that GMA behaves better when a high time

resolution is of interest. Although it has been shown that the

used phase synchrony measure is indeed able to quantify and

discriminate the two conditions, this comes at the expense

of sacrificing the time resolution. As future work, it would

be interesting to infer more information about the interde-

pendencies between the recorded time series by computing

phase locking values for all pairwise channels. Another

approach would be to validate the current methodology on

more subjects to solidify the above conclusions.
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