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Abstract— For Japanese vowel recognition based on surface
electromyography (sEMG), an electrode grid has been shown
to be effective in our previous studies. In this study, we aim to
leverage potential of the electrode grid further by using with
a spatial shift invariant feature extraction method that can
compensate deviation of the attached site of the electrode grid.
We verified efficiency of the shift invariant feature extraction
method in improving the recognition accuracy. 2-D dual tree
complex wavelet transform was employed as such a shift
invariant feature extraction method. Our result shows that
shift invariant feature can provide additional information that
cannot be provided when the channel signals are utilized
independently.

I. INTRODUCTION

Speech is a unique, complex, and dynamic motor activity

through which individuals express thoughts and emotions.

It is one of the most powerful tools of the human species,

and it contributes greatly to the quality of life. Dysarthria

deprives people of such an invaluable tool. In order to

support their communication, there are some researches

where automatic speech recognition (ASR) was applied to

dysarthric patients to estimate what they want to say, since

ASR technology has advanced to the point of being utilized

in our daily lives. However, users’ speech impairments have

caused low recognition accuracy. To overcome this problem,

surface electromyography based ASR (sEMG-ASR) has been

investigated as an augmentative or alternative information

source [1], [2]. sEMG is a procedure that measures muscle

electrical activity associated with muscle fiber contraction

by using electrodes attached on the skin. Not only in cases

when a user makes usual voiced speech, but also when

voiceless mouthed speech is made, sEMG-ASR can support

communication.

Over the last decade, there has been significant progress in

the research on sEMG-ASR [1]–[14]. Previous studies have

indicated the potential effectiveness of sEMG-ASR, not only

for healthy people, but also for dysarthric patients. Deng et

al. [1] proposed an ASR system based on sEMG, with and

without acoustic signal, wherein they showed that a high

word recognition accuracy (over 95%) could be achieved for

dysarthric patients. Their result indicates that sEMG-ASR
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has the potential to be a novel type of speech prosthesis.

To achieve a high recognition accuracy in sEMG-ASR, it is

necessary to decide the appropriate location of the electrodes.

However, in previous studies, disc electrodes or parallel

bar electrodes were used and located empirically, based on

anatomical knowledge. Because there exist relatively small

muscles in proximity to each other in the face or neck

region, it is difficult to avoid the influence of cross talks and

innervation zones when conventional measurement methods

are applied.

In order to improve signal-to-noise ratio of sEMG signals

recorded from the lower facial muscles, Lapatki et al. [15]–

[17] proposed an sEMG system using electrode grid. We

also used an electrode grid which consists of densely-

spaced multielectrodes in our previous experiments [18],

[19] to avoid missing out information about speech in the

measurement step. The sEMG signals were measured from

the submental region with the electrode grid during the

production of five vowel sounds. As a preliminary study, we

conducted vowel recognition experiments by applying lin-

ear discriminant analysis (LDA) and hidden Markov model

(HMM) to the data obtained as described above. We achieved

approximately 80% to 85% recognition accuracies, which

outperformed those of the results of virtually reconstructed

single bipolar signals. In addition, by using sparse discrim-

inant analysis (SDA) proposed by Clemmensen et al. [20],

[21], we evaluated the redundancies in the features resulting

from redundancy of the channels in the electrode grid [19].

In this study, we aim to leverage potential of the electrode

grid further by using with a spatial shift invariant feature. The

shift invariant feature extraction method can be expected to

have a possibility to compensate deviation of the attached site

of the electrode grid, because it can be regarded as relative

spatial shift of signal sources to the sensors. Therefore, we

verify the efficiency of the shift invariant feature extraction

method in improving the recognition accuracy. Specifically,

we employ the 2-D dual-tree complex wavelet transform (DT

CWT) proposed by Kingsbury [22]–[25] as such a feature

extraction method.

II. MATERIAL AND METHODS

A. sEMG System

For our experimental setup, we used an sEMG system

developed by Hattori et al. with few modifications made on

the electrode grid [18], [26]. The electrodes which consisted

of silver bars in Hattori’s study were substituted with spring

connector pins, with each pin having a diameter of 0.8 mm,

to absorb any vertical displacement of the attached site (Fig.
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Fig. 1. (left) The electrode grid. The white double-headed arrow indicates
the row direction, and the gray double-headed arrow indicates the column
direction.
(right) The location of the electrode grid on the submental region in lateral
view.

1). The set of electrodes were arranged in an array of 8 rows

by 8 columns, with the interelectrode distance set to 5.08

mm, from center to center, in both directions. To reduce

skin impedance, a voltage follower circuit was built with

each electrode. The electric potential differences between

each pair of electrodes neighboring in column direction were

amplified up to 66 dB with band-pass filtering between 10

to 1500 Hz. Subsequently, the electric potential differences

(56 channels) were digitized with a 16-bit analog-to-digital

converter (National Instruments, NI USB-6255) and a lap-

top computer running MATLAB with its Data Acquisition

Toolbox (MathWorks, 2010a). A microphone (KNOWLES,

SP0103NC3-3) was also attached in front of the electrode

grid.

B. Data Collection

We obtained data from six Japanese native speakers (two

female and four male with mean age of 26.2 years), who

had no known speech impairments. In each trial, the subjects

were asked to produce each of the five Japanese vowels (/a/,

/i/, /u/, /e/, and /o/) once in random order. The task vowels

were presented on a screen for 1 second with an interval of

2 seconds between each of vowels, and the subjects were

instructed to start vowel production at the onset of a visual

presentation and stop at the offset. A total of 50 trials were

conducted by each subject. During vowel production, the

sEMG signals were recorded with the electrode grid attached

on the submental region as shown in Fig. 1. The grid’s

centerline in the column direction and the last row were

aligned with the center of the mandible and the posterior

edge of the submental triangle, respectively. As preparation,

the skin on the submental region was cleaned with an alcohol

swab prior to attaching the electrode grid. Both the sEMG

and acoustic signals were then captured and digitized at 16

kHz with an analog-to-digital converter. Written informed

consents were obtained from the all subjects prior to the

experiment. This study was approved by the institutional

ethics committee.

C. Data Preprocessing

The sEMG signals were filtered with an 8th order low-pass

Butterworth filter having a cut-off frequency of 500 Hz, and

then downsampled to 2 kHz. The onsets and offsets of the

acoustic signals were used as reference to determine those of

the sEMG signals. The criteria applied in detecting the onsets

and offsets of the acoustic signals were based on a set of

amplitude thresholds. Also, to consider the delay between the

sEMG signals and the acoustic signals [7], the onset of the

sEMG signals were set to precede that of the acoustic signals

by 150 msec. As for the offsets of sEMG signals, these were

set to 150 msec after the offsets of the acoustic signals. These

onsets and offsets of the sEMG signals were used to extract

data for the following feature extraction process.

D. Feature Extraction

We employed 2-D dual-tree complex wavelet transform

(DT CWT) [22]–[25] in combination with cepstral coeffi-

cients as features for this study. For comparison, we prepared

two other feature sets, (i) the cepstral coefficients calculated

directly from each channel, and (ii) the cepstral coefficients

calculated from both channel signals and wavelet coeffi-

cients.

1) Dual-Tree Complex Wavelet Transform: DT CWT was

proposed by Kingsbury [22]–[24] and it employs two real

discrete wavelet transforms (DWT). One DWT gives the real

part of the transform while the other gives the imaginary

part. The two DWTs use different sets of filters that make

an approximately analytic transform possible. DT CWT has

the following properties:

• Approximate shift invariance

• Good directional selectivity (for multidimensional sig-

nals)

• Perfect reconstruction

• Limited redundancy (independent of the number of

scales, 2m for m-dimensional signals)

Extention to 2-D is achieved by separable filtering along

columns and then rows. The 2-D DT CWT produces six

bandpass subimages of complex coefficients at each level,

which are oriented at angles of ±15◦, ±45◦, ±75◦. For more

details, see [22]–[25].

We used MATLAB codes that are available from [27] to

implement the 2-D DT CWT. After interpolation from 7 by

8 data array of each time point to 24 by 28, we applied

the 2-D DT CWT to it. The decomposition level was set to

two for preventing increase of computational time, although

higher decomposition level should be preferable for utilizing

spatial information sufficiently.

2) Cepstral Coefficients: In our preliminary study, the

cepstral coefficients indicated higher recognition accuracies

than time domain features [18]. Therefore, the cepstral co-

efficients were also utilized in this study and extracted from

the windowed signals of each channel and each coefficient

of the 2-D DT CWT. The window length was set to 25

msec, while the window period was set to 12.5 msec. The

real parts of the lower 15 cepstral coefficients (including the

0th coefficients), ∆ features, and ∆∆ features were used as

features. The cepstral coefficients calculated from the all 56

channels and/or the all 1344 coefficients of the 2-D DT CWT

were concatenated as features for each feature sets. Because

this concatenation makes feature dimension so high, feature
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selection, which is described in the next section, is necessary

to avoid the curse of dimensionality.

E. Feature Selection

In this study, we used SDA [20], [21] proposed by

Clemmensen et al. for feature selection as was used in

our previous study [19]. SDA can perform feature selec-

tion simultaneously with dimension reduction by imposing

sparseness constraint. SDA software in MATLAB is available

from [21].

Let X denote an n×p data matrix with observations down

the rows and features in the columns, and let Y denote an

n ×K (classes) matrix of dummy variables which indicate

belonging classes. Clemmensen et al. defined the sparse

optimal scoring criterion as

arg min
θ,β

n−1(‖Yθ −Xβ‖2
2
+ λ‖Ω

1

2β‖2
2
+ γ‖β‖1) , (1)

subject to n−1‖Yθ‖2
2
= 1 . (2)

where β is a p × q matrix of parameters which leads to

q components of directions, θ is K × q matrix of scores,

λ and γ are nonnegative tuning parameters, and Ω is a

symmetric positive definite matrix. This method involves

recasting the classification problem as a regression problem

by turning categorical variables into quantitative variables,

via θ. Iterative algorithm is used for finding a local minimum

of the criterion (1) with respect to β and θ. For fixed θ,

βj , j = 1, . . . , q, is obtained by solving the modified elastic

net problem [28]:

βj = arg min
βj

n−1(‖Yθj −Xβj‖
2

2
+λβT

j Ωβj + γ‖βj‖1) .

(3)

When γ is large, the L1 penalty on βj results in sparseness.

For fixed β, the criterion becomes

θ = arg min
θ

n−1‖Yθ −Xβ‖2
2
, (4)

subject to n−1‖Yθ‖2
2
= 1 . (5)

Steps related to the equations (3) and (4) are iterated until

convergence or until a maximum number of iterations is

reached.

In this study, we set the number of selected features per

component to 100, and λ to 0.01, which were based on

findings from our preliminary study [19]. The number of

components q was set to 4. We applied the SDA to each of

the feature sets.

F. Vowel Recognition

Continuous HMM was adopted for vowel modeling, since

it has been shown that the HMM is effective for sEMG-ASR

as well as for acoustic ASR. An HMM represents a stochastic

process that takes sequential data as the inputs, and outputs

the probabilities that the data are generated by the model.

For each vowel, we used a 9 state left-to-right HMM with 3

Gaussian mixtures, whose covariance matrices in each state

are diagonal. Expectation maximization (EM) algorithm [29]

was utilized in parameter estimation, and the vowel with the

maximum likelihood was adopted as the recognition result.

Hidden Markov Model Toolbox [30] was used to implement

the HMMs in this experiment. 5-fold cross-validations were

conducted to calculate the recognition accuracies.

III. RESULT AND DISCUSSION

Fig. 2 shows recognition accuracies obtained with dif-

ferent feature sets calculated from the channel signals, the

coefficients of the 2-D DT CWT, and both of them. The

recognition accuracies with the coefficients of the 2-D DT

CWT outperformed those with the channel signals only

with respect to the subject 2. For subjects 3, 4, and 5,

the recognition accuracies obtained with the coefficients of

the 2-D DT CWT indicated the highest values among the

three conditions. Although, on average, the results with the

channel signals showed the best performance, including the

coefficients of the 2-D DT CWT could improve recognition

accuracies for the four of six subjects. Note that the parame-

ters used in feature selection were optimized for the condition

with the channel signals of subject 1 in our previous study

[19] and there is no guarantee that these parameters are also

optimal for the other feature sets that include features based

on the coefficients of the 2-D DT CWT. This result suggests

that shift invariance is important property that should be

taken into account in order to compensate the deviation of

attached site of the electrode grid. Also, this result is based

on the decomposition level set to two that can be insufficient

to extract spatial shift invariant information. For the future

work, we are planning to deal with higher decomposition

level. In addition, the 3-D DT CWT will be included in

our future works, because sMEG signals spread spatio-

temporally.

IV. CONCLUSIONS

We verified the efficiency of the shift invariant feature ex-

traction method in improving the vowel recognition accuracy

based on sEMG obtained with the electrode grid. The 2-D

dual tree complex wavelet transform was employed as the

shift invariant feature extraction method in this study. We

conclude that shift invariant feature can provide additional

information that cannot be provided by the channel signals

used independently. Our approach has a possibility to over-

come the deviation of the attached site of the electrode grid

and realize a robust sEMG-ASR system against it.
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