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Abstract— Idiopathic rapid eye-movement (REM) sleep be-
havior disorder (iRBD) has been found to be a strong early
predictor for later development into Parkinson’s disease (PD).
iRBD is diagnosed by polysomnography but the manual eval-
uation is laborious, why the aims of this study are to develop
supportive methods for detecting iRBD from electroencephalo-
graphic (EEG) signals recorded during REM sleep. This method
classified subjects from their EEG similarity with the two
classes iRBD patients and control subjects. The feature sets used
for classifying subjects were based on the relative powers of the
EEG signals in different frequency bands. The classification
was based on the fast and classical K-means and Bayesian
classifiers. With a subject-specific re-scaling of the feature set
and the use of a Bayesian classifier the performance reached
90% in both sensitivity and specificity. For the purpose of
reducing the feature count, the features were evaluated with
the statistical Smith-Satterthwaite test and by using sequential
forward selection a well-performing feature subset was found
which contained only five features, while attaining a sensitivity
and a specificity of both 80 %.

I. INTRODUCTION

Parkinson’s disease (PD) is the 2nd most common neu-
rodegenerative disease after Alzheimer’s disease and causes
major morbidity, mortality, reduced quality of life for those
affected and their families, as well as a major societal
burden. A major pathophysiological cause of the disease is
progressive development of Lewy Bodies in the brain neuron
cytoplasma involving first brain stem and mid brain areas and
later basal ganglia and cortical areas. Motor symptoms are
clinically present with the involvement of the basal ganglia,
but during the period of pre-motor symptoms the involve-
ment of the brain stem and mid brain can cause a number of
symptoms including autonomic changes, depression, smell
disturbances and sleep disorders; among these iRBD. Due to
the long pre-motor period in which the pathophysiological
process and degeneration has begun, identifying incipient PD
is of great importance - especially if medications slowing the
neurodegenerative process becomes available [1] [2].

iRBD has proven to be a promising preclinical marker
with 30% to 65% of iRBD patients eventually developing a
synucleinopathy [3], [4], [5], [6]. Consequently, diagnosing
iRBD carries a possibility for early treatment of PD. Diag-
nosing RBD is, however, arduous work (the doctor i.e. needs
to visually interpret and assess polysomnographic (PSG)
signals) which urges for a supportive detection method driven
mainly on computer force [7] [8].
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RBD is characterized by a loss of spinal motor inhibition
during REM sleep. The patients seem to enact distinct
dreams with unpleasant and often violent content (such
as being threatened, chased or attacked) and as a result,
the patients can be shouting, running, punching etc. during
dreaming [8], [9], [10], [11]. Since iRBD manifests itself
during dreaming and a main requirement for the diagnosis is
alterations during REM sleep, the REM epochs of the EEG
signal were chosen as the basis for the classification. The
REM epochs involved in this study were extracted using
PSG technician scored hypnograms. The workload of this
manual scoring could be avoided by automatically detecting
the REM sleep using a method proposed by Kempfner et al.
which extracts REM sleep from PSG recordings with a mean
sensitivity and specificity of 94% and 96%, respectively [12].

Few studies have evaluated the EEG in iRBD patients [13],
[14], [15], [16]. They found differences in the EEG signals
recorded from iRBD patients as compared to control subjects
comparing the absolute power of different frequency bands
of the signals. To make the detection method developed in
this study more robust to differences in recording equipment,
the features used for classification in this study were based
on relative powers in different frequency bands.

II. DATA

A. Subjects and Sleep Conditions

This study was based on PSG data from 10 iRBD patients
(diagnosed in accordance with [8]) and 10 control subjects.
The recordings were made either at the Danish Center for
Sleep Medicine (DCSM), Department of Clinical Neurophys-
iology, Glostrup University Hospital, Denmark, or outpatient
with the PSG equipment fitted at the hospital. The control
subjects had no diagnosis of Parkinson’s disease or sleep
disorders and all subjects included took no medicine known
to affect sleep. Demographic data for the subjects included
are summarized in Table I.

TABLE I
DEMOGRAPHICS

Age (µ±σ ) No. of subjects (~,|)
Controls 59.8 ± 8.4 10 (5,5)

iRBD 59.0 ± 14.1 10 (2,8)

B. Recordings

The PSG recordings were performed by PSG technicians
in accordance with the AASM sleep scoring standard (from
2004)[7]. The PSG signals used in this study were retrieved
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from six EEG electrodes placed at F3, F4, C3, C4, O1 and O2
with reference to the far mastoid (electrode mounting were in
accordance with the AASM manual [7]). The signal quality
was evaluated by visual inspection and only signals relatively
uncorrupted by noise were selected for further analysis. The
sampling frequency of the analysed sleep data was 256 Hz
and signal processing was performed in MATLAB (R2011a,
32-bit, The MathWorks, Natick, MA, USA). Table II contains
the amount of REM sleep epochs analysed:

TABLE II
REM SLEEP EPOCHS USED IN STUDY

No. of epochs in total Epochs per subject (µ±σ )
Controls 2000 200 ± 50.1

iRBD 1832 183.2 ± 79.9

III. METHODS

The features used for classification were derived from
manually extracted REM sleep epochs of the EEG signals
of 30 second duration and consisted of the relative powers
in various frequency bands. These were then used to train
and test both a Bayesian and a K-means classifier. The
classification of all REM sleep epochs in a PSG recording
further lead to the classification of a subject as either iRBD
patient or control subject. A subject-specific re-scaling of the
features was performed to improve the performance of the
classification. To reduce the feature count, the features of
highest class separability were determined using sequential
forward selection. Five subsets of all features were then
assessed through classification performance. In this study the
classification performance was evaluated with sensitivity and
specificity.

A. Feature Extraction

Absolute powers have previously been used to detect EEG
differences of iRBD patients, as seen in studies [13], [14],
[15], [16]. Since EEG signals are often heavily noised due
to movements of eyes and contractions of facial muscles,
a large-amplitude noise can be present in all relevant fre-
quencies. Therefore, it was decided to use the relative power
in each frequency band compared to the total power in the
area of interest, 0.75-32 Hz. The low cut-off frequency was
chosen to attenuate the high amplitude noise that often is
present close to DC. Five linear-phase, FIR band-pass filters
were created, all with an order of 1296, transition bands of
0.5 Hz, and an attenuation of at least -80 dB in the stop band.
The frequency bands can be seen in Table III. The signals
were filtered leading to a total of 30 features (five frequency
bands from each of six electrodes).

Eventually, to increase the performance of the classifi-
cation of the subjects, a subject specific re-scaling of the
features was carried out according to equation (1),

xnew,i, j =
xold,i, j− xmin,i, j

xmax,i, j− xmin,i, j
, (1)

TABLE III
FREQUENCY BANDS USED

Band Low-Cut High-Cut
δ 0.75 4
θ 4 8
α 8 13
β1 13 22
β2 22 32

where xmax and xmin were chosen as the 1st and 99th

percentiles of all REM epochs of the subject, i is the subject
the REM epochs originated from, and j is the element in the
feature vector. The classification was performed with both
the original and the re-scaled features.

B. Feature Selection

After feature extraction a Smith-Satterthwaite test was
performed to investigate if any of the features (the relative
power in different frequency bands) had significantly dif-
ferent group means in the two groups, iRBD patients and
control subjects. The test is based on equation (2),

t ′ =
(X−Y )−δ√

S2
1

n1
+

S2
2

n2

(2)

The features were further analysed by the Fisher’s Dis-
criminant Ratio (FDR) which is a class separability measure
for each feature given by the difference in group means
divided by the sum of variances of the two groups. The
feature displaying the highest FDR was used as initiator in
the feature selection process. The order of features used was
determined by sequential forward selection as described by
[17], where the class separability of the first selected feature
and every other feature is assessed, and the combination
with the best performance measure is kept. This process
continues until the desired amount of features is reached.
The measure for class separability used was J3 which can
compare combinations of a fixed number of features and is
given by,

J3 = trace(S−1
w Sm), (3)

where S−1
w is the within-class scatter matrix and Sm is the

mixture-class scatter matrix, given as the sum of the within-
class scatter matrix and the between-class scatter matrix [18].

This suboptimal sequential forward selection was used to
lighten the computational load from testing all combinations.

C. Classification

The classification was performed with all 30 features,
but also with subsets of these. In the classification process,
the feature vectors (each representing a REM epoch) were
sectioned into two clusters - a cluster for control subjects
and a cluster for iRBD patients. Subsequently, the REM
epoch classification was used for classifying subjects. The
classification of REM epochs was done using two different
hard-clustering classifiers. The first, a classifier based on
Bayes? formula [18], is a probabilistic, supervised method,
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that creates a second-order decision line between clusters
and assigns REM epochs to the cluster it is most probable
to origin from. Bayes’ formula is stated as in equation 4,

P(Ci | x) =
P(Ci) · p(x |Ci)

p(x)
, (4)

where P(Ci | x) is the a posteriori probability that an observed
sample x comes from Ci, P(Ci) is the a priori probability of
class Ci, p(x | Ci) is the likelihood function of Ci and p(x)
is the point distribution function of x, regardless of class.

The training of the second classifier was based on K-means
clustering which is an unsupervised method. It creates K
centroids (in this case two) and assigns all data points to
the centroid they are closest to according to the minimum
distance [18], hence making a cluster around each centroid.
It then relocates the centroids to the weighted center of all
points belonging to that cluster and iterates, assigning all data
points to the closest centroid once again. This continues until
the centroids no longer moves significantly. The classifier
determined which cluster to assign to which group (iRBD or
control) depending on the fractions of feature vectors in the
clusters originating from either of the groups. When testing
the classifier on the REM epochs of a test subject, feature
vectors (representing the REM epochs) are assigned to the
class with the nearest centroid following the principle of a
minimum distance classifier.

In the subject classification a test subject was categorized
as control if more than half of the classified REM epochs
belonged to the cluster labelled as control, or as iRBD if
the opposite was the case. This was done with both the
normalized and the re-normalized features. Classification was
assessed with several performance measures are calculated,
including the sensitivity and the specificity.

D. Cross-validation

The classification followed a leave-one-subject-out cross-
validation method where the models were trained on the
REM epochs of all subjects but one and the REM epochs of
the last subject were used for testing. In that way the fraction
of REM epochs from each person assigned to either group
can be determined, and the subject will be labelled control
or iRBD patient depending on where the highest fraction of
REM epochs are.

IV. RESULTS AND REFLECTIONS

In this section, the results of the statistical analyses and
classification is presented. The feature sets consisting of the
relative powers in the five frequency bands will be denoted
normalized before re-scaling, and re-normalized afterwards.

A. Statistical analysis

The results from the Smith-Satterthwaite test on the nor-
malized data is shown in Table IV. With a 97.5 % confidence
two of all features showed significant difference between
iRBD and control group means, and with 90 % confidence
four features were significantly different. This indicates that
the used EEG measures of the iRBD patients do not vary

much from that of the control subjects. The significant
differences found occurred in higher frequency bands, and in
all four features the control subjects had higher mean values
of the relative powers, indicating a relative EEG slowing in
patients with iRBD.

TABLE IV
SIGNIFICANT RESULTS FROM SMITH-SATTERTHWAITE TEST FOR

DIFFERENCE IN RELATIVE POWERS AND THEIR SIGNIFICANCE LEVELS.

Channel & Band O1-A2 β1 C3-A2 β1 C4-A1 β1 O1-A2 β2
Significance 0.005 0.025 0.10 0.10
Highest mean Healthy Healthy Healthy Healthy

B. Classification

The results of all attempts to classify subjects with the
Bayesian classifier with various amounts of features is shown
in Fig. 1. Generally, the Bayesian classifier provided well
performing results. The most prominent was the classification
with all 30 features and re-normalized data, which reached
a sensitivity and specificity of 90 %. It is worth noticing
that by use of five normalized features, the classifier was
able to attain 80 % in sensitivity and specificity. This is a
valuable result if the aim is to reduce the amount of features,
the computational load, or the complexity of the method.
Another interesting observation is that the five features which
attained the good classification all origin from the O1-A2
and F3-A2 signals, both located in the left hemisphere of
the brain.

Fig. 1. Results of performance measures from the Bayesian classifier.
Green bars are from normalized data, red bars are from re-normalized data.

The same classifications were performed for the unsuper-
vised K-means classifier, displayed in Fig 2, to investigate
the performance of a simpler method. Despite attempt-
ing different percentiles for re-normalization and various
amounts of features, no good classifications occurred. The
best classification was by use of 20 normalized features
which attained a sensitivity and specificity of 50 % and 80
%, respectively. This indicates that the K-means classifier is
not sufficiently advanced for achieving a proper classification
of the data used in this study.
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Fig. 2. Results of performance measures from the K-means classifier.
Green bars are from normalized data, red bars are from re-normalized data.

V. DISCUSSION

The Smith-Satterthwaite test showed that two features had
different iRBD and control group means on a 2.5% signif-
icance level. Both features reflect power in the frequency
band 13-22 Hz in which both EEG and EMG activity can be
present according to the AASM standard. Since the diagnosis
of iRBD is based on loss of atonia during REM sleep,
the EMG activity during REM sleep could be considerably
increased in iRBD patients. Therefore, it could be discussed
whether the significant differences found at O1-A2 and C3-
A2 can be caused or at least influenced by the higher amount
of EMG activity present. Generally, the increased possibility
of measuring EMG activity on iRBD patients during REM
sleep, could contribute favourably to the classification.

Other factors possibly affect the clustering and hence
the final classification: The credibility of the hypnogram
manually scored by the PSG technician is lowered when
dealing with patients having a sleep diagnosis. This means
that the hypnogram of an iRBD patient is more likely to have
true non-REM epochs erroneously scored as REM epochs
entailing an unintentional inclusion of non-REM epochs in
the iRBD class data. Furthermore, the PSG recordings of the
control subjects were recorded outpatient whereas the iRBD
patients were recorded inpatient. This could imply differ-
ences in the EEG signals caused by recording conditions
rather than brain activity.

Another issue is the electrode-scalp connection. The
impedance is solely measured at the initiation of the record-
ing and thus there is no guarantee that the impedance is
kept constant during the whole night of sleep. Variations in
impedance would induce erroneous signal changes. Finally,
only a visual inspection for artifacts has been performed; If
these issues could be minimized or completely removed it
would increase the credibility of the results.

In order to generalize the results obtained in this study
more subjects should be included in the analyses in future
works. Also a randomization of the recording conditions for
iRBD patients and controls should be performed as well
as better treatment of the noise, e.g. using the multivariate
PSG recordings for adaptive noise cancellation. It could
be interesting to examine other features and classification

methods. Possibly ICA and wavelet derived features could
improve the sensitivity of the detection method.

VI. CONCLUSION

A promising, simple approach for detecting iRBD from
EEG signals during REM sleep has been developed. Using 30
features the Bayes’ classifier reached 90 % in both sensitivity
and specificity when classifying subjects. The statistical
analysis showed alterations in the 13-22 Hz frequency band
of iRBD patients in the left hemisphere. From the sequential
forward selection a subset of five features were found that
reached a relatively high classification performance of 80
% in both sensitivity and specificity which demonstrates
potential of the approach. It is thus concluded that the
EEG patterns of iRBD patients and control subjects during
REM sleep provide a basis for detecting iRBD and the
method developed in this study shows promising results
while keeping the computational load low.

References are important to the reader; therefore, each
citation must be complete and correct. If at all possible,
references should be commonly available publications.
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