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Abstract ² This paper proposes a method for the 

classification of ventricular arrhythmia using support vector 

machines (SVM). The features used in the SVMs were extracted 

automatically based on morphological information. Three 

different features were extracted: RR interval, QRS slope, and 

QRS shape similarity. Then, the SVM was used to classify five 

different electrocardiogram (ECG) heartbeat episodes. The 

Gaussian Radial Basis Function was utilized for the kernel 

function because the ECG beat episodes were treated as a 

non-linear pattern.  The sensitivity of the classification used for 

the five beat episodes was 93.16%. 

I. INTRODUCTION 

Many people have suffered from various illnesses. 
Arrhythmia is one of the critical diseases, especially 
ventricular arrhythmia, which is a significant symptom of 
heart attack, and arrhythmia detection and classification have 
been become important work. Researchers have attempted to 
classify arrhythmia using many different tools, including a 
fuzzy clustering neural network [1], an adaptive neural 
network [2], AR modeling [3], wavelet transform [4], the 
time-frequency method [5], particle swarm optimization [6], 
and higher-order spectral techniques [7]. These approaches 
have achieved remarkable results, but most of the related 
methods included a heavy calculation cost or had to be 
manually calculated for extracting features.  

In this work, we propose that ventricular arrhythmia using 
SVM should be classified with a morphological feature vector 
that extracts automatically and simply. As the QRS complex 
has the most information on the ventricular arrhythmia [2], we 
extracted the feature from the QRS complex. The proposed 
approach was validated by the MIT-BIH and Creighton 
University database and yielded reliable classification 
accuracy. 

This paper is organized into five sections. A preprocessing 
stage of ECG data is presented in Section II. In Section III, we 
describe how to extract the features. Section IV presents the 
Support Vector Machine (SVM) briefly. In Section V, we 
discuss the results of our proposed method. Finally, the 
conclusion is discussed. 

 
*This research was financially supported by the Ministry of Education, 

Science Technology (MEST), and National Research Foundation of Korea 

(NRF) through the Human Resource Training Project for Regional 

Innovation. 

S. H. Lee, H. C. Ko, and Y. R. Yoon are with the Department of 

Biomedical Engineering, College of Health and Science, Yonsei University, 

Wonju 220-710, Korea (corresponding author Yoon to provide phone: 

82-33-760-2809; fax: 82-33-763-1953; e-mail: yoon@yonsei.ac.kr). 

 

II. ECG DATA PREPROCESS 

All of the ECG data was obtained from the Creighton 
University Ventricular Tachycardia database and various 
MIT-BIH databases comprised of Normal Sinus Rhythm, 
Malignant Ventricular Arrhythmia, and Supraventricular 
Arrhythmia. The sampling frequencies of the ECG data were 
128 Hz or 250 Hz. The ECG record has an annotation file that 
was used to identify an ECG beat. We selected five different 
types of heart rhythms, such as normal sinus rhythm (NSR), 
supraventricular tachycardia (SVT), ventricular tachycardia 
(VT), ventricular flutter (VFL), and ventricular fibrillation 
(VFib) from the records kept by Creighton University or the 
MIT-BIH database. 

In the preprocessing step, first, each ECG record was 
resampled. The ECG records had been sampled at different 
rates; therefore we needed to normalize the ECG sampling 
frequency. In this paper, all of the ECG records had been 
resampled with a 200Hz sampling frequency. We must show a 
QRS complex because the objective of this paper is ventricular 
arrhythmia classification, and the component of ECG of QRS 
complex clearly shows up to 200Hz sampled ECG records. 
Each record was separated into four-second segments after the 
process of resampling was completed. For this paper, we 
obtained four-second segments from each ECG record and 
automatically distinguished the QRS complex. The duration 
of 4 seconds refers to the real-world time expended on ECG 
data collection. In record of 60 beats per minute (bpm) NSR, 
number of QRS complex appears approximately 3 during 4 
seconds. If the data collection took less than 4 seconds, it then 
lacked information on the QRS complex required for 
decisions and if it took more than 4 seconds, the data was 
provided too late to formulate decisions on the proper 
treatment. Finally, each segmented ECG underwent filtering, 
such as a 2-40 Hz bandpass filter, and correction of baseline 
drift or shift (1). This correction uses a 500 ms window of the 
ECG segment and subtracts the average of the window from 
each value of the window. This process continued until the end 
of the ECG segment. 

III. FEATURE EXTRACTION 

The feature extraction is a core process utilized for the 
recognition of heart rhythm. For a good recognition, a 
well-extracted feature is required. We extracted a feature from 
the QRS complex based on morphological information. These 
features offer physiologically meaningful information. Three 
of these features were selected to classify the ventricular 
arrhythmia, and these features are QRS slope, and QRS shape 
similarity. 
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A. QRS Detection 

Detection of the QRS complex should be conducted 
because this process affects the feature extraction process a 
great deal after the preprocess is concluded. The QRS 
detection process is comprised of the following sequence. 1) 
The ECG segment is separated into two parts, with one being 
above the baseline (the positive part) and the other being under 
the baseline (the negative part). 2) The process of adaptive 
threshold peak detection is applied to these two parts. 3) We 
defined the peak of the positive part as 1 and the peak of the 
negative part as -1. 4) The sequence of [-1 1 -1] was 
established, means of QRS location, and the performance 
results of QRS detection are given in Fig. 1. This algorithm is 
modified from [8]. In [8], a threshold was determined 
adaptively, but it was only good for PhotoPlethysmoGraphic 
(PPG). So, to apply this method properly for ECG, we added a 
feedback variable, and then (1) was drawn.  

PDNÞ L PDNÞ?5 E Ú
ãØÔÞÙ7->çÛåÖ7-?�¶´¸

¿Þ
          (1) 

In (1) PDNÞ , E, LA=Gá?5 , ê¾¼À  and (æ  signify k-th slope 
threshold, slope changing rate, previous peak amplitude, 
standard deviation of the four-second segments, and sampling 
frequency. The PDNÞ?5  of a second term is operated as a 
feedback factor and this factor make a threshold slope to 
exponential shape. 

B. RR Interval 

In a normal situation, the human heart does not beat at a 
fast rate. In cases of tachycardia, flutter, and fibrillation, the 
RR interval is shorter than a normal beat, however. The P and 
T wave are combined or disappeared. This feature represents a 
ventricular pacing status. 

C. QRS Complex Slope 

A ventricular conduction problem leads to the gradual 
slope of QR and RS, a means of expanding QS width. Typical 
symptoms of this problem include tachycardia, flutter, and 
fibrillation. The NSR and the SVT have a steep incline. In this 
paper, which considers two parts of slope, such as QR and RS, 
the conductivity was calculated by averaging the slope value 
of QR and RS. 

D. QRS Complex Shape 

The shape of the QRS complex is a significant factor in 
classifying ventricular arrhythmia. The QRS shape of NSR, 
SVT, monomorphic VT, and VFL show a similar pattern, 
compared with the shape of WKH�456¶�own segment. In this 
paper, cross correlation was used to measure the similarity of 
the QRS shape at each four-second segment. A method of 
obtaining a stable score on how QRS shape is matched is 
described in the following sequence. 1) The first QRS shape is 
converted into a reference template. 2) A cross correlation is 
performed with each QRS shape. 3) The latter process is 
conducted again until every QRS shape has been selected as a 
reference template. 4) The median value of the cross 
correlation represents the stable score of the QRS shape. 

 

IV.  ECG CLASSIFICATION 

A Support Vector Machine (SVM) is a powerful 
classification tool proposed by C. Cortes  and V. Vapnik [9].  

Figure 1.  The detection process for the QRS segment: (a) the positive part 

of ECG; (b) the negative part of ECG; (c) QRS (-1 1 -1) sequence; and (d) 

detection of QRS segment; the red line in (a) and (b) is adaptive threshold 

line and in (c) is detected peak location 
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TABLE I.  THE RESULTS OF CROSS-VALIDATION 

  

The concept behind this method is the maximization of a 
margin of two groups, whereas a typical classifier minimizes a 
misclassification. The SVM separates input data X into two 
classes. When the decision hyperplane d(x) conducts this 
separation, X determines whether d(x) > 0 or d(x) < 0.  

A classification problem generally occurs when there is a 
non-linear class boundary. It is a very hard to separate classes 
into two groups, so a feature space is transformed to a higher 
dimension space. As a result of this transformation, we can 
utilize a more simple support vector classifier. The method of 
increasing dimension creates a problem, however: an 
increased calculation cost. To solve this problem, the kernel 
trick was proposed. Using a kernel function, we can calculate 
3D vectors as 2D vectors. The SVM should optimize the 
hyperplane. To perform this optimization, the following 
objective function should be solved [10]. 
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The objective of this equation was to maximize (2) in 
conditions of (3) and (4). A linear classifier is easier to use in 
analysis or calculation than a non-linear classifier, but in this 
work, the distribution pattern of the groups is not clearly linear. 
In this case, we used a non-linear SVM, which necessitated a 
kernel function. In this work, a Gaussian Radial Basis 
Function (RBF) was utilized as the SVM kernel function 
represented by (5). The RBF kernel is commonly used in 
unknown data distribution. 
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As when using SVM, a two-step process must be 
conducted. One is a training step. The other is a classifying 
step. In the training step, when input vector come into (2), the 

vector D, which is maximizing the (1), is obtained. This vector 
creates a discriminant function given in (6). In the classifying 
step, a new input vector is determined by the discriminant 
function. The SVM method is basically a binary classification 
tool, but we have five classes of data and thus could classify 
just two.  

To solve this problem, two methods, called one against 
one (OAO) and one against all (OAA), were developed, and 
we applied OAA to this work, and this method was discussed 
in [9]. The OAA, named ³winner takes all,´ sorts all of the 
classes into the same group except one, a reference class, and 
then a one binary classifier can be made. If the k classes 

 

TABLE II.  THE RESULTS OF CLASSIFICATION 

 

existed, total k binary classifiers would be created. 

V. RESULTS & DISCUSSION 

In this experiment, we used ECG data extracted from 
Creighton University and the MIT-BIH database. We included 
five types of ECG beat episodes: NSR, SVT, VT, VFL, and 
VFib. These five episode types are called ventricular 
arrhythmias except the NSR. Unfortunately, these episodes 
are not all the same because arrhythmia episodes arise variably 
and do not have to be sustained for 4 seconds. For this reason, 
the segment of SVT and VFL could not be extracted from the 
ECG record easily. To establish a training data set, we chose 
50% of each beat episode and left out those used for the test set. 
The total number of data was 323, while that of the training set 
was 162. Another 161 data had been used in the test set data. 

We needed to select two parameters, C and ����� L 5

6�.
 

for optimal classification. To find these two parameters 
optimally, we had to perform a cross-validation. Then, we 
took the best of C and gamma. In this work, the five classes 
exist, and cross-validation should be performed five times. 
Table I shows the results of cross-validation. 

The results of SVM classification are shown in Table II. 
This table represents the correct classified number, 
misclassified number, and accuracy of each heartbeat class. 
The NSR and SVT were 100% classified, but some VT, VFL, 
and VFib were misclassified. The three VT data were 
misclassified as VFL, and four VT data were misclassified as 
VFib. For VFL, two data were classified to VT. Each bit of 
VFib data was classified as VT or VFL. The QRS complex of 
NSR and SVT had a very similar morphology, and the SVT¶V 
RR interval was commonly shorter than that of NSR. This is a 
why good distinguish result appeared between NSR and SVT. 
The polymorphic VT, VFL, and VFib resembled each other, 
as well. VT consists of two types: monomorphic and 
polymorphic. The monomorphic VT has a very simple type of 
beat shape, and stable QRS complex shape with wide QRS 
width and fast beat rate. This morphological characteristic is 
very similar to VFL. In contrast, the polymorphic VT is 
characterized by a variable QRS complex, like VFib. These 
facts explain why this morphological approach does not 
perfectly classify ventricular arrhythmia.  

VI. CONCLUSION 

The objective of this study was to apply 
morphological-based SVM classifications to ventricular 
arrhythmias, such as NSR, SVT, VT, VFL, and VFib. The 
three classification features were extracted through the 

Class Type NSR SVT VT VFL VFib 

Cross-Validation 

Accuracy (%) 
96.3 95.06 92.59 91.36 88.27 

C 128 32 8 16 4 

Gamma 1 4 1 4 0.5 

Class Type NSR SVT VT VFL VFib 

NSR 63 0 0 0 0 

SVT 0 5 0 0 0 

VT 0 0 20 3 4 

VFL 0 0 2 23 0 

VFib 0 0 1 1 39 

Sensitivity(%) 100 100 74.07 92 95.12 

Specificity(%) 100 100 97.76 97.06 96.67 
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automatic QRS complex detection method. In computer 
simulation, our proposed method has a successful result of 
recognition and 93.16% sensitivity. Future research might aim 
to increase the number of each heartbeat data point and find a 
morphological feature to obtain greater accuracy. 
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