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Abstract² Aging is a process that is inevitable, and makes 

our body vulnerable to age-related diseases. Age is the most 

consistent factor affecting the sleep structure. Therefore, new 

automatic sleep staging methods, to be used in both of young 

and elderly patients, are needed. This study proposes an 

automatic sleep stage detector, which can separate wakefulness, 

rapid-eye-movement (REM) sleep and non-REM (NREM) sleep 

using only EEG and EOG. Most sleep events, which define the 

sleep stages, are reduced with age. This is addressed by 

focusing on the amplitude of the clinical EEG bands, and not 

the affected sleep events. The age-related influences are then 

reduced by robust subject-specific scaling. The classification of 

the three sleep stages are achieved by a multi-class support 

vector machine using the one-versus-rest scheme. It was 

possible to obtain a high classification accuracy of 0.91. 

Validation of the sleep stage detector in other sleep disorders, 

such as apnea and narcolepsy, should be considered in future 

work.  

I. INTRODUCTION 

The temporal structure of sleep is described by dividing the 

sleep into so-called sleep stages, in this case wakefulness, 

NREM and REM sleep. This is based on different sleep 

events as described in [1]. Age is the most consistent factor 

affecting the sleep architecture. The amount of time spent in 

deep-sleep, which is described as NREM3 sleep, decreases 

with age, and more wakefulness is also observed. 

Additionally, the amount of time spent in REM sleep also 

tends to decrease in elderly when comparing with young 

adults [2]. Major changes in the EEG during NREM sleep in 

elderly are well known. The amplitude of the delta-band, 

which includes slow wave activity, is lowered in elderly. 

Additionally, the numbers of sleep spindles and K-

complexes become fewer compared to young adults [3], and 

the amplitude of the sleep EEG in elderly is suggested 

reduced [4]. Elderly also tend to have increased EMG 

activity in form of periodic limb movements and restless 

legs during NREM sleep [5], [6], and sleep related 

respiratory irregularities are also more prevalent in elderly 

[7], [8]. The volume of short-lasting awakenings during 

NREM sleep, also known as arousals, increases with age, 

but is stable across age in REM sleep [9]. Few changes 

during REM sleep have been reported.  The occurrence of 
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REMs during REM sleep is substantially reduced in the 

elderly [10] and increased EMG activity has also been 

reported [11]. These changes are a challenge for automatic 

sleep staging.  

 

Automatic sleep-staging methods are requested in the sleep-

clinics, since manual scoring is time-consuming and it 

introduces inter-rater variability. This study is based on our 

previous study [12], where only the REM sleep stage in 

elderly has  been detected. This method has been extended, 

such that is capable of detecting REM sleep, NREM sleep 

and wakefulness in young and elderly patients. Furthermore, 

the data used in this study has been increased by including 

other sleep disorders and young healthy adults. 

II. DATA 

A. Subjects and demographics 

A total of forty subjects from the Danish Center for Sleep 

Medicine, Department of Clinical Neurophysiology, 

Glostrup University Hospital, Denmark, were enrolled. Their 

diagnosis and demographics are summarized in Table 1. The 

young and elderly groups are both healthy and have no 

known sleep disorders. Subjects with periodic limb 

movements disorder (PLM) and idiopathic REM sleep 

behavior disorder (iRBD) are experiencing increased amount 

movements during sleep [13].  

Table 1: Demographics 

Group No ������  $JH�����1��PLQ��PD[��PHGLDQ��years A 

Young 10 (6, 4)  28.6 ± 5.2 (25, 41, 26) 

Elderly 10 (8, 2)  55.2 ± 8.2 (45, 73, 53) 

PLM 10 (5, 5)  58.6 ± 10.3 (43, 75, 59) 

iRBD 10 (2, 8)  61.7 ± 8.0 (51, 76, 61) 

    A ä and ê corresponds to the mean and standard deviation. 

B. Data acquisition 

All subjects underwent one full night polysomnography in 

accordance with American Academy of Sleep Medicine [1]. 

Approximately seven to eight hours of sleep per subject 

were available when using data from light-off to light-on. 

Only the left and right EOG channels combined with the F3-

A2, C3-A2 and O1-A2  EEG channels were used. A2 denotes 

the right mastoid. All recordings were visually inspected by 

experienced specialists to ensure their quality. The sampling 

frequency of the analyzed sleep data was 256 Hz. The 

proposed algorithm was programed in MATLAB. 
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III. METHOD 

A. Preprocessing of the EEG and EOG 

In [12], [14] a fourth-order Butterworth (BW) bandpass filter 

with 3 dB cutoff frequencies at 1 and 5 Hz, respectively, was 

successfully used to separate the REM from slow-eye- 

movement (SEM), baseline drift and EMG activity. 

However, in this study a total of eight bands, including the 

abovementioned, were used to separate REMs from 

everything else. One band could not separate SEMs from 

REMs properly in our new increased data set. The number of 

bands, eight in this case, was estimated by trial-and-error. 

The left and right EOG channels were both band-pass 

filtered with fourth-order BW bandpass filters according to 

[15]. Furthermore, each EEG channel (F3-A2, C3-A2, O1-A2) 

was filtered into the traditional five clinical bands using 

fourth-order BW bandpass filters [15]. Finally, the power-

line noise was reduced by a fourth-order BW notch filter 

with the cutoff frequencies (3 dB) 48 Hz and 52 Hz, 

respectively. The frequency bands are defined in Table 2. 

 
Table 2: Cutoff frequencies 

 

Channels Band Type Low [Hz] High [Hz] 

EOG W5 bandpass 0.25 5.00 

EOG W6 bandpass 0.50 5.00 

EOG W7 bandpass 0.75 5.00 

EOG W8 bandpass 1.00 5.00 

EOG W9 bandpass 1.25 5.00 

EOG W: bandpass 1.50 5.00 

EOG W; bandpass 1.75 5.00 

EOG W< bandpass 2.00 5.00 

EEG / bandpass 1.00 4.00 

EEG � bandpass 4.00 8.00 

EEG . bandpass 8.00 13.0 

EEG � bandpass 13.0 30.0 

EEG � bandpass 30.0 65.0 

EEG  bandstop 48.0 52.0 

B. Partition of data 

The preprocessed sleep data were then partitioned into 3-

second mini-epochs, which is widely used in the sleep 

community [16]. This was achieved by using a sliding 

window, as illustrated in Fig. 1. 

 

 
Fig. 1: The analysis window consists of 11 mini-epochs, corresponding to 

33 seconds [12]. 

 

Ten mini-epochs surrounding the center mini-epoch (n) were 

included in the reference window. The total reference 

window duration was therefore 11 mini-epochs, which 

corresponds to 33 seconds, and the step size of the sliding 

window was 1 mini-epoch (3 seconds). Furthermore, the 

partitioned signals were expanded at the beginning and 

ending by repeating the 5 first mini-epochs at the beginning 

and the 5 last mini-epochs at the ending. 

C. EOG features 

Sideway eye movements were described by the normalized 

covariance values of the pre-processed and partitioned EOG 

channels. The normalized covariance is given by: 

NÞ:J; L
êÔÕ:J;

¥êÔÔ:J;�êÕÕ:J;
 (1) 

where ê corresponds to the covariance and = L WÞ
P and 

> L WÞ
V. The WÞ

P and WÞ
V correspond to the left and right 

EOG analysis window for the bands G L sátá å áz (Table 2). 

It is assumed that REMs in REM sleep, SEMs in NREM1 

sleep and eye movements in wakefulness will yield a 

negative correlation, whereas background EOG would be 

uncorrelated 

D. EEG features  

Movement disorders, especially iRBD, may have increased 

muscle noise in the EEG channels. This is addressed by 

using the median as a robust amplitude measure:  

I�:J; L ��������Ü:J;����������� (2a) 

I�:J; L ��������à:J;� (2b) 

I�:J; L ��������Ù:J;� (2c) 

I	:J; L ��������Ú:J;� (2d) 

I
:J; L ��������Û:J;���� (2e) 

In (2) the�Ü:J;, à:J;, Ù:J;, Ú:J; and Û:J; correspond to 

the clinical EEG bands, which is defined in Table 2, of the 

window illustrated in Fig. 1 at mini-epoch index n. 

E. Feature scaling 

The age-related influence is addressed by rescaling each 

feature into the range of approximately 0 to 1. In this study 

two modified min-max methods were used, one for the EOG 

and another for the EEG.  

1) EOG feature scaling  

The individual EOG features were rescaled by: 

�Þ L
�Þ F���:�Þ;

���:�Þ; �F���:�Þ;�
 (3) 

������G L sátá å áz, and �Þ corresponds to the N 

normalized covariance values computed by (1) for a given 

subject and band k. The original min-max scaling method 

defined in (3) is not robust towards outliers. The minima and 

maxima were therefore estimated by:  

����:�Þ; �� �������:�Þ?;��������� (4a) 
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����:�Þ; �� ������:�Þ>;�������� (4b) 

where �Þ
? corresponds to all the normalized covariance  

values between Fsärr Q �Þ
? O Frätw, whereas �Þ

> 

corresponds to the all the normalized covariance values 

between Frätw Q �Þ
> Q Esärr for a given subject and band 

k [12]. 

2) EEG feature scaling  

Furthermore, the EEG features were rescaled according to: 

�Þ L
�Þ F����:�Þ;�

����:�Þ
; �F����:�Þ

;� (5) 

������G L ÜáàáÙáÚá Û, and �Þ corresponds to the N 

median values computed by (2) for a given subject and band 

k. The minima and maxima were estimated by: 

 

����:�Þ
; �� �69:�Þ

;�������� (6a) 

����:�Þ
; �� �;9:�Þ

; (6b) 

where �69 and �;9 correspond to the 25
th
 and 75

th
 percentile, 

respectively [12].  

F. Feature merging 

The scaled features were then merged into an [N x 23] 

feature matrix F defined in (8), where N corresponds to the 

number of feature samples for a given subject. The feature 

matrix is therefore given by: 

 

ôóýõ  L >�5á�6á�7á�8�9á�:á�;á�<? (7a) 

ô
óóõ

J/  L B��

J/ á��

J/ á��
J/ á�	

J/ á�

J/C (7b) 

ô
óóõ

G/  L B��

G/ á��

G/ á��
G/ á�	

G/ á�

G/C (7c) 

ô
óóõ

S-  L B��

S- á��

S- á��
S- á�	

S- á�

S-C (7d) 

where F is given by: 

ô L � côóýõáôóóõ
J/ áô

óóõ

G/ áô
óóõ

S- g (8) 

G. Classification 

In this study the multi-class support vector machine (MC-

SVM), using the one-vs-rest approach, combined with the 

Radial Basic Function (RBF) as kernel, was used. Three 

SVM classifiers, which can separate each class from the rest, 

were constructed. They are denoted SVMW (wake vs. rest), 

SVMR (REM vs. rest) and SVMN (NREM vs. rest). New 

objects are assigned to the class that has a positive vote and 

the largest distance to its hyperplane [17±19]. The 

optimization of each classifier was obtained by the k-fold 

stratified cross-validation scheme, where k was chosen as 5 

in this study. The manual hypnogram was modified into a 

target vector by first labeling, e.g. the REM sleep epochs, 

'+1' and everything else '-1'. The target vector was then 

extended by successfully repeating each epoch a further nine 

times. This will LQFUHDVHV� WKH� ³VDPSOLQJ� UDWH´� IURP� RQH��

score per epoch (30-seconds) to 10 scores  per epoch, which 

is the same as one score per mini-epoch (3-seconds). The 

target vector of wakefulness and NREM was made similarly, 

yielding a total of three target vectors, one for each SVM. 

H. Post-processing of the MC-SVM classifier 

Normally, NREM and REM sleep tend to alternate cyclically 

through the night [20]. This trend was exploited by post-

processing the MC-SVM output. This was achieved by 

converting the estimated MC-SVM output into smoothened 

³SRVWHULRU-like probabilities´, as illustrated in Fig. 2. 

 
Fig. 2: Post-processing of the MC-SVM. Plot (A) corresponds to the raw 

MC-SVM output, while plot (B) shows the three converted binary outputs, 

where red, green and blue corresponds to W, REM and NREM, 

UHVSHFWLYHO\�� 3ORW� �&�� LOOXVWUDWHV� WKH� VPRRWKHQHG� ³SRVWHULRU-like 

SUREDELOLWLHV´��ZKLOH�SORW��'��VKRZV�WR�WKH�ILQDO�SUHGLFWLRQ��ZKHUH�EODFN�DQG�

red corresponds to the true hypnogram and the estimated hypnogram, 

respectively. 

 

The MC-SVM output consists of three classes (Fig. 2A), 

which was converted into three binary outputs as illustrated 

in Fig. 2B. In order to eliminate short-term transients, the 

three estimated binary outputs were individually smoothened 

by a normalized Blackman window (Fig. 2C) according to  

[15]. The class with the highest ³SRVWHULRU-like SUREDELOLW\´�

in each mini-epoch was then the final outcome of prediction 

(Fig. 2D). The SVM parameters, which obtained the highest 

accuracy (agreement), are summarized in Table 3. The 

Blackman window duration was found best at 97. 
 

Table 3: SVM parameters 

 

Parameters SVMW SVMR SVMN 

� 25 2-2 26 

@ 2-3 2-2 2-3 

 

where C and @ are the SVM and RBF kernel paramters, 

respectively. 
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IV. RESULTS AND DISCUSSION 

The results are summarized in the confusion matrix in Table 

4. The proposed sleep stage classification algorithm yields 

an overall accuracy of 0.91 in young healthy subjects and 

elderly patients. This is assumed to be acceptable when 

comparing with other promising sleep staging studies, where 

the accuracy range from 0.87 to 0.95 [21-23]. The number 

of enrolled subjects in those studies range from five to 39, 

mostly young healthy subjects. A sleep stage study of 28 

healthy elderly subjects and Parkinson's disease patients 

(elderly) has been addressed in [24], where the obtained 

accuracy was 0.88 and 0.68 in the healthy and diseased 

group, respectively. Notice, some of those studies are also 

detecting the sub-classes ofNREM sleep. 

Table 4: Confusion matrix (mini-epochs) 

Manual 

NREM REM w 
NREM 238,661 7,907 12,187 

REM 7,053 62,690 1,445 

w 6,496 423 45,778 

Se,,,itivitv V.'1.J 0.88 0.77 

"'·- ·~ . 
0.97 0.98 

The individual group accuracies of the young, elderly, PLM 

and iRBD are 0.91, 0.91, 0.90 and 0.91, respectively. The 

error primarily occurs in the transition regions, or when 

sleep is highly fragmented. Especially short periods of 

wakefulness gets misclassified, due to the smoothing effect 

of the post-processing scheme (Fig. 2D). The above

mentioned evaluation is based on mini-epochs (3-second), 

while the original hypnogram consists of epochs (30-

seconds ). The influence of this was tested by converting the 

mini-epochs back to epochs. Each epoch was classified by 

the majority vote between its 10 mini-epochs in the final 

prediction. This, however, did not have any influence on the 

performance, due to the size of the Blackman window D=97 

(mini-epochs), which corresponds to a duration of 291 

seconds. 

V. CONCLUSION 

The proposed algorithm is capable of estimating the sleep 

stages wakefulness, NREM and REM in young healthy 

subjects and elderly patients automatically, and is not 

affected by age related changes. It was possible to obtain a 

high overall accuracy of0.91. This is comparable with other 

sleep stage studies, even those using only young healthy 

adults. Inclusions of other sleep disorders, such as apnea and 

narcolepsy, should be considered in future work. 
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