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Abstract² Idiopathic Rapid-Eye-Movement (REM) sleep 

Behavior Disorder (iRBD) is one of the most potential 

biomarkers for Parkinson's Disease (PD) and some atypical PD 

(AP). It is characterized by REM sleep with abnormal high 

surface EMG (sEMG) activity. Some twitching during REM 

sleep is normal, but no one has defined what normal is, and no 

well-defined methodology for measuring muscle activity in 

REM sleep exists. The purpose of this study is to investigate the 

possibility of detecting abnormal high muscle activity during 

REM sleep in subjects diagnosed with iRBD. This has been 

achieved by considering the abnormal high muscle activity 

during REM sleep in iRBD subjects as an outlier detection 

problem, while exploiting that iRBD muscle activity is more 

grouped. It was possible to correctly discriminate all iRBD  

subjects from healthy elderly control subjects and subjects 

diagnosed with periodic limb movement (PLM) disorder. 

However, not all PD subjects were classified as having 

abnormal muscle activity, which is assumed to support the fact 

that not all PD subjects develop RBD. 

I. INTRODUCTION 

The pathology of PD and AP is complex and not completely 

understood [1]. The motor symptoms (tremor, rigidity, 

akinesia, postural instability) of PD results from the loss of 

dopamine-generating neurons located in the brain parts 

called substantia nigra. When the motor symptoms are 

prominent, and the diagnosis is set, the brain is seriously 

affected. Recent research shows that there are some earlier 

symptoms, which can be simply described as abnormal high 

muscle activity during REM sleep [2]. The medical term for 

this phenomenon is REM sleep behavior disorder (RBD), 

and is characterized by REM sleep without atonia (RSWA) 

and, consequently, increased muscle tone and burst activity 

of the submental or limb sEMG [2]. RBD without current 

signs of PD/AP, or any other diseases, is designated as 

idiopathic RBD (iRBD). Idiopathic RBD is most likely one 

of the earliest signs of PD/AP. In long-term prospective 

studies the percentage of subjects with iRBD, who will 

eventually develop PD or AP,  ranges from 40% to 65% after 

average 10-15 years [3], [4]. Correct detection of iRBD is 

therefore essential, especially if treatment becomes available.  
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However, some muscle activity during REM sleep is normal, 

but no one has defined what normal is, and no accepted 

methodology exists for measuring abnormal high muscle 

activity in REM sleep. Investigation of RSWA has been 

studied for some years using different approaches. Mostly, 

this has been done manually, with few semi-automatic 

exceptions [5±11]. There is no conventional standard for 

labeling muscle activity during REM sleep, but one manual  

method is widely used in the literature [12]. This manual 

scoring method, however, is time consuming and can be 

interpreted differently. Therefore, new automatic 

quantification methods of muscle activity during REM sleep 

is required. This study is an improved version of our 

previous work [13], which includes enhanced features and an 

improved quantification scheme.  

II. DATA 

A. Subjects and demographics 

A total of forty-eight subjects from the Danish Center for 

Sleep Medicine, Department of Clinical Neurophysiology, 

Glostrup University Hospital, Denmark, were enrolled in this 

study. They were divided into four groups according to their 

diagnosis. The demographics of the four groups are 

summarized in Table 1. Subjects with periodic limb 

movements disorder (PLM) are experiencing twitching or 

jerking movements that occur as frequently as every 20 to 40 

seconds during NREM sleep, which, in a suppressed form, 

may continue into REM sleep. The consequences of this 

must therefore be investigated, since PLM should not be 

confused with iRBD.   

Table 1: Demographics 

Diagnose No ������  $JH�����1��PLQ��PD[��PHGLDQ��years A 

Control 12 (8, 4)  57.5 ± 9.2 (45, 73, 54) 

PLM 12 (6, 6)  58.7 ± 11.6 (43, 75, 59) 

iRBD 12 (2, 10)  62.2 ± 7.3 (51, 76, 62) 

PD 12 (3, 9)  64.5 ± 6.4 (52, 74, 64) 

    A ä and ê corresponds to the mean and standard deviation. 

B. Data acquisition 

All involved subjects underwent one full night 

polysomnography in accordance with the international 

standard [14]. This corresponds to approximately seven to 

eight hours of sleep per subject when using data from light-

off to light-on (total recording time). A total of three sEMG 
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channels were used to detect RSWA, corresponding to the 

submentalis (CHIN) and the left and right anterior tibialis 

(TIBL, TIBR). All recordings were visually inspected by 

specialists to ensure their quality. The sampling frequency of 

the analyzed sleep data was 256 Hz. 

III. METHOD 

A. Preprocessing of the sEMG data 

The sEMG may contain artifacts such as baseline drift, 

powerline noise, electrocardiography (ECG) crosstalk, or 

even respirational artifacts in CHIN. These were reduced by 

the use of a fourth-order Butterworth (BW) bandpass filter 

according to [15]. The chosen cutoff frequencies (3dB) were 

30 Hz and 65 Hz, respectively [16]. The lowest amplifier 

anti-aliasing filter cutoff frequency in our data was 70 Hz. 

The power-line noise was reduced by using a fourth-order 

BW notch filter with the cutoff frequencies (3 dB) 48 Hz and 

52 Hz, respectively [15]. The sEMG activity was described 

by two envelope curves, a baseline and an activity envelope 

curve. This is also addressed in section C. In this study the 

envelope curves are obtained by smooting the full-wave-

rectified preprocessed sEMG signals with a normalized 

Blackman window according to [15]. The normalized 

Blackman window is defined as: 
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The Blackman window durations were Mb = 1280 points for 

the baseline envelope and Ma = 128 points for the activity 

envelope, respectively.  

B.  Partition of the preprocessed sEMG data 

The envelope curves, from a given subject, were then 

partitioned into mini-epochs with a fixed duration of 3-

seconds. One robust feature, which could characterize 

muscle activity, was extracted from each individual mini-

epoch using a sliding window as illustrated in Fig. 1. 

 
Fig. 1: Sliding window. The reference window consists of 31 mini-epochs, 

while the center test window consists of one mini-epoch. The step size is 

one mini-epoch [13].   

 

C. Feature extraction of the envelope curves 

For diagnosis of iRBD it was recommended by [17] that any 

type of sEMG activity, whether it consists of sustain or burst 

activity or a combination of both should be used to quantify 

the muscle activity. Therefore, a simple relative sEMG 

feature has been designed. The sEMG must be analyzed 

relatively, and should not be compared between muscles or 

subjets directly. Therefore, the activity window (Fig. 1) was 

relatively compared to the baseline window by following 

relationship: 
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where n amd m is the mini-epoch index and test window 

sample index respectively, while xtest and xref are the 

envelope curves of the activity and baseline window. The 

feature computed by (3) compares relatively the mean of the 

activity envelope (�rcqr) with the minimum of the baseline 

envelope (�pcd). In [13] only one envelope curve with 

duration of 128 points was used. A baseline envelope (�pcd) 

with a longer duration, 1280 points in this case,  reduces the 

risk of getting unexpected low values in the denominator in 

(3). A total of three features were extracted from each 

subject, which corresponds to one feature from each of the 

three sEMG channels (CHIN, TIBL and TIBR). 

D. Outlier detection 

The objective of the outlier detector, the one-class support 
vector machine (OC-SVM) is this case, was to classify the 
feature samples computed by (3) into two classes, an inlier 
class or an outlier class. The inlier class is assumed to contain 
the normal REM sleep mini-epochs (with atonia), while the 
outlier class is assumed to contain the abnormal REM sleep 
mini-epochs (RSWA). The REM sleep features were selected 
from the manual scored hypnogram, which was scored by 
sleep a specialist. An example of outlier detection is 
illustrated in Fig. 2. 

 
Fig. 2: Scatterplot of the outlier detection using the TIBL and TIBR. The 

left plot corresponds to a healthy control subject, while the right plot shows 

an iRBD subject. The green dots are detected inliers, whereas red dots are 

outliers.  It can be seen that the activity in the iRBD subject is higher than 

the healthy control, due to the amount of red dots. 

 

1) The one-class support vector machine 

The original support vector machine (BC-SVM) is a 

relatively new supervised-learning algorithm, originally 

introduced by [18], [19], and widely used in the litterature. 

The one-class support vector machine (OC-SVM) is an 

unsupervised extension of the BC-SVM learning algorithm 
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[20], [21]. The OC-SVM has successfully been applied in 

different fields, which includes fraud detection, text 

document classification and medical diagnosis. In contrast to 

the original SVM, which finds the discriminative boundary 

between two classes, the OC-SVM finds the smallest 

possible boundary that encloses most of the target data. This 

may be obtained in the absence of any anti-target data (only 

one class). The OC-SVM algorithm creates a function, which 

takes the value +1 in a small region enclosesing most of the 

data points and -1 elsewhere. This is illustrated in Fig. 2. 

Assuming a set of training vectors is available  Ü Ð 9á E L
sá å á�, in this case features computed by (3), the OC-SVM 

solves the optimization problem:  
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Where � and é are the weights and offset respectively, both 

of which have to be learned from the data. The æi is the slack 

variable, which specifies the amount of misplacement 

contributed by each data point. To avoid overfitting the 

parameter å Ð :rás? is introduced which characterizes the 

fraction of outliers, or in other words, the proportion of data 

points for which the OC-SVM output takes the value -1. The 

Radial Basic Function was used as kernel in this study, 

which maps the feature vector   into an inner product space , 

such that the dot product in this feature space can be 

computed by evaluating the kernel given by:  

-: Ü á  Þ; L �: Ü; ® �: Þ; L ���:�F@! Ü F  Þ!
6;�� :y; 

A freely available MATLAB implementation of the used 

OC-SVM classifier (LIBSVM) was used [22], [23]. 

 

2) Validation of algorithm 

All the adjustable OC-SVM parameters  were found by a 

simple grid-search approach, in combination with the leave-

one-out cross validation scheme. It is assumed that healthy 

controls have fewer muscle activations during REM sleep 

compared to iRBD subjects (Fig. 2). Therefore, inspired from 

[24], the OC-SVM classifier was trained using only healthy 

controls. The REM sleep features from the healthy controls 

was selected from the manual scored hypnogram. The feature 

samples from a given subject may be correlated. For that 

reason a fold consists of whole subjects. A single fold (one 

healthy control) was held out for validation, while the 

remaining 11 folds (11 healthy controls) were used for 

training. The trained OC-SVM was then applied on the 

healthy control that was left out and one random selected 

iRBD, PLM and PD subject. This procedure was repeated 12 

times in total, each time leaving a different healthy control 

out as validation subject, which was matched to a different 

iRBD, PLM and PD subject each time.  

3) Post processing of the OC-SVM output 

Each 30-second epoch consist of 10 mini-epochs. The voting 

principple was used to classify each epoch into normal or 

abnormal, denoted �����lmpk and �����_`lmpk, respec-

tively. If six or more mini-epochs in each epoch was 

classified as an outlier, then the whole epoch was labeled as 

abnormal. This will label most of the PLM epochs as normal, 

since they usually only have few outlier mini-epochs in each 

epoch continuously during the night, which may continue 

into REM sleep. However, iRBD ourlier mini-epochs are 

assumed more grouped, and will therefore be classified as 

abnormal. The number of abnormal epochs with respect to 

the total number of REM sleep epochs in each subject was 

used as a quantitative muscle score for that subject. The 

muscle score as a percentage is given by: 

� L S�����_`lmpk

S�����_`lmpk E S�����lmpk ® srr :z; 
Misclassification of PLM subjects was a minor issue in our 

previous study [13], where the total amount of mini-epochs 

that was classified as outliers during REM sleep in 

percentage was used as muscle score (S). A local voting 

principple as abovementioned solved that issue. Never-

theless, four muscle scores (Scontrol, SiRBD, SPLM, SPD) from the 

12 validations were computed, corresponding to a total of 48 

score values. The performance of the algorithm was 

measured by the area under the receiver operating 

characteristic (ROC) curve (AUC), where the iRBD scores 

were labeled as the positive group, while the controls and 

PLM scores were labeled as the negative group [25]. The PD 

subjects were not included in the optimization process. The 

reason is discussed below. The parameter combimation with 

the highest AUC was then chosen. The muscle scores are 

shown in Fig. 3. 

IV. RESULTS AND DISCUSSION 

Periodic limb movements (PLMs) normally appears in 

NREM sleep, and may continue, in a suppresed form, in 

REM sleep. The method was therefore tested on subjects 

diagnosed with PLM disorder. Additionally, the algorithm 

was also tested on PD subjects, but they were not included in 

the parameter optimization process, since not all PD subjects 

develop RBD, and the hypnogram inter-score agreement of 

PD subjects is low [26]. All the sEMG channels were 

preprocessed to reduce the number of outliers that were not 

associated with muscle activity. However, the applied pre-

processing step can not guarantee that all detected outliers 

are associated with musle activity, but the ³mis-

classification´ is at least systematic. All the controls, PLM 

and iRBD subjects were classified correctly when using a 

threshold of 5.5% (��� L särrá å L räs{á Û L t?;). 
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However, 9/12 of the PD subjects were classified as having 

RBD. This supports that not all PD subjects develop RBD.  

 

 
 

Fig. 3: The muscle activity score of the four classes. Blue, red and green 

corresponds to healthy controls, PLM and iRBD subjects, while black 

corresponds to PD.   

V. CONCLUSION 

Detection of abnormal high muscle activity during REM 

sleep can be considered as an outlier detection problem and 

that iRBD muscle activity is more grouped compared to 

PLM activity, which consist of short lasting muscle bursts 

that are more periodic. It was possible to separate all PLM 

subjects and healthy controls from iRBD subjects using the 

proposed method. Furthermore, 9/12 of the enrolled PD 

subjects were classified as having abnormal high muscle 

activity during REM sleep, which is assumed to support the 

fact that not all PD subjects develop RBD. Other sleep 

disorders, such as apnea, may also have increased muscle 

activity during REM sleep, and should be tested in future 

work.  
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