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 Abstract—This paper presents a pattern recognition 

approach for the identification of basic hand movements using 

surface electromyographic (EMG) data. The EMG signal is 

decomposed using Empirical Mode Decomposition (EMD) into 

Intrinsic Mode Functions (IMFs) and subsequently a feature 

extraction stage takes place. Various combinations of feature 

subsets are tested using a simple linear classifier for the 

detection task. Our results suggest that the use of EMD can 

increase the discrimination ability of the conventional feature 

sets extracted from the raw EMG signal.  

 

 Index Terms—Biomedical signal analysis, Empirical Mode 

Decomposition (EMD), pattern classification, 

electromyography (EMG). 

I. INTRODUCTION 

Controlling a robotic exoskeleton hand is a problem that 
should be faced in order to construct an autonomous system 
for a hand amputee. The utilization of electromyogram 
(EMG) signals seems to be a viable solution since every 
movement has a distinct signature on the produced signal. 
The EMG signal classification can be quite accurate leading 
to efficient control strategies of a robotic hand [1] with the 
advances in Biosensors, Pattern Recognition and Biosignal 
processing [2], [3]. Moreover, it is more comfortable for a 
hand amputee to wear a glove that includes the EMG 
electrodes than using the rather promising 
electroencephalography (EEG) electrodes in the area of the 
head [4]. This issue is of significant importance for using 
such a system in a daily basis.  

Several approaches to solve the motion command 
identification problem using EMG signals have been 
suggested, achieving in some cases low classification error, 
using not necessarily typical daily hand’s movements and a 
large number of electrodes (in most of the cases more than 4) 
[5]. This is an issue that can have a negative impact in the 
expenditure for the construction of a system that consists of 
sensors and electrodes and it may not be so comfortable and 
acceptable from a hand amputee. Therefore, it would be 
desirable, for a dexterous prosthesis, to let the amputee 
command a grasp posture and force, just by performing the 
corresponding action with the exoskeleton prosthetic hand. 
Also, a way to finely modulate the force involved in a grasp 
is paramount in daily life activities, for example to hold a 
credit card, a glass of water, a pencil, a ball without breaking 
it or to grasp a hammer without letting it slip [6].  
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This paper presents a pattern recognition approach for 
the identification of basic hand movements using surface 
EMGs acquired using two electrodes attached on two 
specific muscles of the hand. The novelty of our approach 
resided on the use of only two electrodes and the application 
of Empirical Mode Decomposition (EMD) for the extraction 
of additional features. Our results show that the information 
carried by the EMD extracted features can increase the 
classification accuracy leading eventually to more effective 
control of a robotic hand.  

The rest of this paper is structured as follows. Section II 
describes the experimental set up along with a short 
description of all the involved technologies. Section III 
presents the experimental results and Section IV concludes 
the paper providing some hints for future research. 

II. EMD-BASED EMG-DATA HAND MOVEMENT 

CLASSIFICATION 

The pattern recognition approach consists of few discrete 
stages. First a number of EMG recordings were collected as 
described in the next subsection. Then a preprocessing stage 
was involved to exclude the non-contracting portions at the 
beginning of each movement. Following the muscle 
contraction detection, segmentation of the rest of the signal 
takes place using overlapping windows. The classification 
stage focuses on the classification of each one of these basic 
window segments into six distinct categories, after the 
extraction of an appropriate feature set using both the raw 
EMG signal as well the Intrinsic Mode Functions (IMFs) 
that are produced by the application of the EMD. The rest of 
this section provides a short description of each one of the 
aforementioned stages.   

A. EMG Data Collection 

The experiments consisted of freely and repeatedly 
grasping of different items which were essential to conduct 
the hand movements. The speed and force were intentionally 
left to the subject’s will. There were two forearm surface 
EMG electrodes Flexor Capri Ulnaris and Extensor Capri 
Radialis, Longus and Brevis [7]) held in place by elastic 
bands and the reference electrode in the middle, in order to 
gather information about the muscle activation. 

For the data collection five healthy subjects (two males 
and three females) of the same age approximately (20 to 22-
year-old) were asked to repeat the following six movements, 
which can be considered as basic hand movements [8] 
(Figure 1): 

a) Spherical: for holding spherical tools 
b) Tip: for holding small tools 
c) Palmar: for grasping with palm facing the object 
d) Lateral: for holding thin, flat objects  
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e) Cylindrical: for holding cylindrical tools 
f) Hook: for supporting a heavy load 

For each movement the subject was asked to perform it 
for six seconds and the whole procedure was repeated 30 
times for each basic movement. Therefore for each subject a 
total of 180 6-second long 2-channel EMG signals were 
recorded. 

The data were collected at a sampling rate of 500 Hz, 
using as a programming kernel the National Instrument’s 
(NI) Labview [9]. The signals were band-pass filtered using 
a Butterworth Band Pass filter with low and high cutoff at 
15Hz and 500Hz respectively and a notch filter at 50Hz to 
eliminate line interference artifacts.  

 

Figure 1.  Illustration of the hand gestures. 

 

Figure 2.  The experimental setup: a) National Instruments analog/digital 

conversion card NI USB-6009. b) 2-channel EMG system. c) 2 Differential 
and 1 reference EMG Sensor. 

The hardware that was used (Figure 2) was an NI 
analog/digital conversion card NI USB-6009, mounted on a 
PC. The signal was taken from two Differential EMG 
Sensors and the signals were transmitted to a 2-channel 
EMG system by Delsys Bagnoli™ Handheld EMG Systems 
[10]. 

C. Preprocessing 

In order to focus only on segments where the muscle is 
contracted, we applied the sliding window approach 
proposed in [11]. Within a sliding window of 40 msecs the 
average IEMG value (see section II.F) was calculated. Once 
that value exceeded a predefined threshold we considered 
that the muscle was no longer in a resting phase and we 
started processing the rest of the recording. 

There are two major techniques in data windowing: 
adjacent windowing and overlapping windowing [11]. In this 
work we selected the overlapping approach with time 
windows of 300 msecs (150 data points) and an overlap of 
270 msecs (or a time leap of 30 msecs) (Figure 3). On each 
of these segments we applied EMD for the extraction of 
IMFs. 

D. Empirical Mode Decomposition 

Most real life processes are inherently non-linear and non-

stationary. As a result, using algorithms that assume linearity 

and stationarity can be problematic. EMD [12] provides a 

novel adaptive method for analyzing non-linear and/or non-

stationary signals that are encountered in most, 

. 

 

Figure 3.  300 msec long overlaping windows  

EMD acts as an adaptive non-linear filter, decomposing the 

signal into a number of IMFs, where an IMF represents a 

simple oscillatory function satisfying two conditions: 

1. The number of zero crossings and the number of local 

extrema are either equal or differ by one. 

2. The local average (defined by the average of local 

maximum and local minimum envelops) is equal to 

zero. 

These two conditions guarantee that all the maxima of an 

IMF are positive and all its minima are negative.  

Given a signal x(t) the EMD algorithm can be summarized 

as follows: 

1. Identify all local minima and local maxima of the given 

signal (x(t)). Create an upper (emax(t)) and a lower 

(emin(t)) envelope interpolating between successive local 

maxima and local minima respectively (usually via cubic 

interpolation) 

2. Calculate the running mean  

3. Subtract the mean from the signal to extract the detail 

d(t)=x(t)-m(t). 

4. Repeat the whole process replacing x(t) with m(t) until 

the final residual is a monotonic function (or a user 

specific number of IMFs has been extracted – 

application dependant). 

In practice, step 4 may not produce a valid IMF. As a 

result, shifting needs to take place, which implies the 

iteration of steps 1 to 4 on the detail  d t  until a specific 

criterion is met [12], [13]. Therefore, the original signal x(t) 

is eventually decomposed into a sum of IMFs plus a 

residual term: . 

Figures 4 and 5 depict one of the two EMG signals along 
with the corresponding first three IMFs for the case of: a) 
Lateral movement and b) Cylindrical movement.  
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Figure 4.  Raw EMG signal along with the first three IMFs for the case of 

the Lateral movement 

=  

Figure 5.  Raw EMG signal along with the first three IMFs for the case of 

the Cylindrical movement 

E. Feature extraction 

As in almost all pattern recognition applications 
involving biomedical signals, a feature extraction stage is 
necessary in order to condense the relevant information and 
also alleviate the problem with the curse of dimensionality. 
The features should be selected in such a way as to 
maximally separate the desired output classes. In practice, 
the feature selection is regarded by some researches as being 
more of an art than a science [14]. 

In our case eight popular features [15] were extracted, 
this time not only from the original EMG signals but from 
the three IMFs that were produced after processing the EMG 
signals with the help of EMD toolbox [16] as well as from 
the residual. The eight features are the following  

1) Integrated Electromyogram (IEMG): 
This feature is an average value of the absolute values of 

EMG, defined as       
 

 
 ∑     

 
   ,  

where xk is the k
th

 sample data out of N samples of EMG 
raw data. 

2) Zero Crossing (ZC): 
ZC counts the number of times that the signal crosses 

zero. A threshold needs to be introduced to reduce the noise 
induced at zero crossing. Given two contiguous EMG 
signals xk and xk+1, the ZC can he calculated as:  

    ∑     , where 

     {
                       
                                
                                       

 

for k = 1, 2, 3,... N-1 

3) Variance (VAR): 
VAR is a measure of the power density of the EMG 

signal given by: 

     
 

   
 ∑       

 

   

 

                        

4) Slope Sign Changes (SSC): 
SSC counts the number of times the slope of the signal 

changes sign. Given three contiguous EMG signals xk-1, xk 
and xk+1 the number of slope sign changes can be calculated 
by      ∑      where 

     {
                               
                              
                                             

 

for k = 1, 2, 3, …. (N-1) 

5) Waveform Length (WL) 
WL is a cumulative variation of the EMG that can 

indicate the degree of variation about the EMG signal. It is 

given by     ∑        –     
   
    

6) Willison Amplitude (WAMP) 
WAMP is the number of counts for each change of the 

EMG signal amplitude that exceeds a defined threshold. It 
can indicate the muscle contraction level as given by  

      ∑         –     

   

   

 

     {
                

 
                        

 

7) Kurtosis: 

The kurtosis of a distribution is defined as    
       

   

8) Skewness 

The skewness of a distribution is defined as    
       

   

where µ is the mean of x, σ is the standard deviation of x, 
and E(t) represents the expected value of the quantity t. 

The kurtosis and skewness variables compute a sample 
version of this population value. 

Therefore a total of 40 (8 features from the EMG, 24 
(3x8) from the three IMFs and 8 features from the residual) 
features were extracted for each segment. 
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F. Classification 

Since our intention was to check whether the inclusion of 
the EMD based extracted features can increase the 
performance of a classification system the emphasis was not 
set on the optimal selection of the classifier. We therefore 
selected a simple linear classifier (a classifier that creates 
decision boundaries between compartments in the feature 
space that are linear (hyper)planes), since as it was pointed 
out in [17] for most real life data, “a simple linear surface 
can do surprisingly well as an estimate of the true decision 
surface”. In other words each feature vector x  is assigned to 
class for which the value of the corresponding discriminant 
function is maximum: 

      1
arg m ax 2 ln

T

i i i
i

i P 


   x μ C x μ          

where 
i

μ is the mean of class i,  i
P   is the prior 

probability of class i, and C is the estimated covariance 

matrix assumed common for all classes (even though this 

assumption does not hold in many practical applications, the 

classifier still performs surprisingly well). One other 

advantage of the selection of the specific classifier is that it 

does not require the tuning of any parameters, which is one 

of the major issues in machine learning [18]. 

III. EXPERIMENTAL STUDIES 

In this work we used each subject “at its own control”, 
meaning that the data coming from each subject were not 
mixed with data coming from any other subject. In order to 
estimate the performance we used the 5 x 2CV (cross-
validation) approach [19]. In other words each time we 
randomly selected 15 of the recordings for training and the 
rest 15 for testing for each one of the six movements that 
were described in Section II and are depicted in Figure 1. 
Then we swapped the two sets (the training set was 
becoming the testing set and vice versa) and the whole 
process was repeated five times. The averaged results for 
each one of the five subjects (total number (all six 
movements included) of correct segments for each subject 
over the five trials divided by the total number of segments 
for each subject over the five trials) are depicted in Table I. 
We tested the performance of the algorithm using; a) only 
features coming from the raw EMG signals, b) features 
coming from the first IMF and c) all extracted features. We 
do not show the results for the features coming from the rest 
of the IMFs since the classification performance deteriorates.   

IV. CONCLUSIONS 

In this work we presented a preliminary study regarding 
the use of EMD for the extraction of additional features for 
the task of hand movement classification using EMG 
signals. As seen from Table I, even though individually the 
features extracted by the raw EMG signals perform better 
than the features sets extracted by the IMFs, the ensemble of 
features performs the best.  

Therefore even though we have not performed a 
systematic feature selection stage the inclusion of the 
information coming from the IMFs seems to have a positive 
impact on the classification accuracy. In future work we will 

focus both on extracting the most relevant of the involved 
features as well as on testing more powerful classification 
schemes which will be tested on a larger database that we are 
forming involving more subjects. 

TABLE I.  CLASSIFICATION PERFORMANCE FOR THE 5 SUBJECTS 

subject 
Classification accuracy (average) 

Raw EMG 

extracted features 

First IMF 

extracted features 

All extracted 

features 

Male 1 86,92 78,03 90,42 

Male 2 92,38  84,97  94,80  

Female 1 85,24 83,32 87,25 

Female 2 83,88 78,94 88,05 

Female 3 84,82 77,68 85,53 
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