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Abstract— An electromygraphic (EMG) Silent Speech Inter-
face is a system which recognizes speech by capturing the
electric potentials of the human articulatory muscles, thus
enabling the user to communicate silently. This study deals with
improving the EMG signal quality by removing artifacts: The
EMG signals are captured by electrode arrays with multiple
measuring points. On the resulting high-dimensional signal,
Independent Component Analysis is performed, and artifact
components are automatically detected and removed. This
method reduces the Word Error Rate of the silent speech
recognizer by 9.9% relative on a development corpus, and by
13.9% relative on an evaluation corpus.

I. INTRODUCTION

Speech is the most natural way of interaction between hu-
mans and has also become a means of wide-range communi-
cation and machine interaction due to the advent of telephone
technology and speech-based electronic devices. However,
classical voice-based communication requires speech to be
clearly audible, which incurs lack of robustness in noisy envi-
ronments, disturbance for bystanders, compromised privacy,
and exclusion of speech-disabled people.

These challenges are tackled by Silent Speech Interfaces,
which are systems enabling speech communication to take
place without the necessity of emitting an audible acoustic
signal, or when an acoustic signal is unavailable [1]. Over the
past few years, we have developed a Silent Speech Recog-
nizer based on surface electromyography (EMG), where the
electrical activity of the articulatory muscles is captured by
EMG electrodes attached to the subject’s face. This allows
speech to be recognized even when it is produced silently, i.
e. mouthed without any vocal effort [2].

Our current system uses electrode arrays for the recording
of facial electromyographic signals. In [3] we present first
results using this new system and introduce Independent
Component Analysis (ICA) as a means to improve the
recognition accuracy. This paper extends those results by an
algorithm which automatically detects and removes artifact
components in the ICA decomposition of the input EMG
signal. Artifacts may arise from technical sources (e.g. power
line noise) or biological sources (e.g. movement, ECG) and
are known to be a major source of recognition errors. We
additionally investigate the spatial distribution of the ICA
components, thus giving evidence that ICA actually extracts
localized sources of EMG activity.
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Fig. 1. EMG array positioning

II. RELATED WORK

Using EMG for speech recognition dates back to the
1980s, however competitive performance was first reported
by [4], who achieved an average word accuracy of 93% on
a 10-word vocabulary of English digits. [5] reported good
performance even for silently spoken words.

The first EMG-based speech recognizers were usually
whole-word recognizers with a relatively small vocabulary,
ranging around 10 words (e.g. [4], [5], [6]). Current work still
occasionally focuses on whole-word classification tasks, e.g.
for specific problems like nasality [7]. In 2006, initial results
were found on the usage of smaller modeling units, in partic-
ular context-independent phonemes [8] and phonetic features
[9], which represent properties of phonemes like place or
manner of articulation. Phonetic feature recognition gave rise
to our Phonetic Feature Bundling algorithm, which reduces
the Word Error Rate of the EMG-based speech recognizer by
more than 33% relative [2]. During the past few years, we
have been using the Bundled Phonetic Feature recognizer
as a basis to tackle issues such as session independency
[10] or discrepancies between audibly spoken versus silently
mouthed speech [11].

All recognizers described so far use rather elementary
preprocessing methods, e.g. time-domain features [7], [8] or
frequency- or wavelet-based features [5], [6]. While time-
domain features appear to be superior to frequency-based
features [8], they are still incapable of separating signals
from different EMG activity sources, or EMG signals and
artifact noise. Our array-based system strives to enable
versatile methods such as ICA or beamforming prior to
normal feature extraction in order to achieve an improved
signal preprocessing; in particular, this paper deals with ICA-
based artifact removal.

III. DATA ACQUISITION AND CORPUS

For EMG recording we use the multi-channel EMG ampli-
fier EMG-USB2 produced and distributed by OT Bioelettron-
ica, Italy (http://www.otbioelettronica.it/),
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together with a set of electrode arrays also acquired from
OT Bioelettronica.

The EMG array configuration for our experiments is
shown in figure 1. We use two arrays: A chin array with
a row of 8 electrodes with 5 mm inter-electrode distance
(IED), and a cheek array with 4 × 8 electrodes with 10
mm IED. In order to minimize common-mode artifacts,
we chose a bipolar measurement configuration, where the
potential difference between two adjacent channels in a row
is measured. This means that out of 4× 8 cheek electrodes
and 8 chin electrodes, we obtain (4 + 1) · 7 = 35 signal
channels. EMG signals are sampled at 2048 Hz. The audio
signal is parallely recorded with a close-talking microphone.

The recording protocol follows [2]. We use 15 sessions
by 6 speakers, where each session consists of 50 English
sentences: a set of 10 “BASE” sentences, which is kept fixed
across sessions and used for testing, and a set of 40 training
sentences which varies across sessions. The sentences are
read in normal, audible speech. Note that our array corpus
also contains recordings of silently mouthed speech, which
were not used in this study. The setup which is used in this
paper corresponds to the “B-1” setup from [3], however we
have extended the corpus: The 7 sessions which we used
in [3] form a development set which we used to optimize
the parameters of our artifact removal algorithm. From that
corpus we extracted 8 further sessions, which were set aside
to be used as an evaluation set. The speakers overlap between
the development corpus and the evaluation corpus. In this
study we only perform session-dependent experiments, i.e.
training and testing is performed separately for each session.
The following table summarizes our corpus.

Corpus # of Speakers / Average data length in sec.
Sessions Training Test Total

Development 6 / 7 149 42 191
Evaluation 5 / 8 135 40 175

IV. BASELINE SYSTEM AND RESULTS

A. Feature Extraction, Training, and Decoding

For each EMG channel, we perform framing and compute
five time-domain features, see [8] for details. ICA is applied
on the 35 raw EMG signal channels before feature extraction,
see section IV-B. The final feature is created by performing
a stacking of adjacent feature vectors with context width 5
according to the optimal result from [3], thus yielding up to
35 · 5 · (5+1+5) = 1925 features if the full EMG channel set
is used. After this step, we compute a Principal Component
Analysis (PCA) on the resulting extended feature vectors,
reducing their dimensionality to 700. This step is followed by
Linear Discriminant Analysis (LDA) to obtain a final feature
vector with 32 coefficients. In [3] we show that the PCA step
is necessary in order to obtain robust results; otherwise, the
LDA computation would be inaccurate.

The recognizer is based on three-state left-to-right fully
continuous Hidden-Markov-Models. All experiments use
bundled phonetic features (BDPFs) for training and decoding
[2]. For decoding, we use the trained acoustic model together
with a trigram Broadcast News language model. The test set

Fig. 2. EMG Signals of the chin array before ICA processing (left) and
after ICA processing (right). The ICA decomposition shows visibly distinct
EMG signal components and artifact noise.

perplexity is 24.24. The decoding vocabulary is restricted to
the words appearing in the test set, which results in a test
vocabulary of 108 words incl. variants. Note that we do not
use lattice rescoring. For more details see [3].

B. ICA Application

The ICA algorithm computes a linear transformation on
the input signal which maximizes the statistical independence
between the estimated components. We use the Infomax ICA
algorithm according to [12], as implemented in the Matlab
EEGLAB toolbox [13], to compute a session-dependent ICA
decomposition matrix from the 40 utterances of the training
set of the respective session. In our baseline system we
interpret ICA as a method of (blind) source separation [3],
therefore we apply ICA and then perform feature extraction
on the estimated independent components; this includes the
PCA step and the LDA step. In this study we refine this
method, see section V.

C. Baseline Results

We compute the Word Error Rate (WER) with and without
ICA application for our baseline system. The following table
shows the results: in all cases, ICA application reduces
the WER, although the improvement is not statistically
significant.

Corpus WER without ICA WER with ICA
Development 46.3% 45.3%
Evaluation 58.5% 54.7%

V. ICA-BASED ARTIFACT REMOVAL

A. Direct Approach and Backprojection

In the baseline system, we applied ICA without consider-
ing the nature of the estimated components. In particular, we
fed both artifact components and EMG-like “target” compo-
nents into our feature extraction and thus into the recognition
system. From figure 2, we see that artifact components are
typically vastly different from target components: the 7 orig-
inal EMG channels of the chin array of one utterance (left)
are decomposed into three “target” components which look
like EMG signals, and four “noise” components. Therefore
we expect that the removal of the noise channels improves
the recognition results. We pursue two strategies:
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Fig. 3. Results for different ICA component removal strategies. See text for details.

• Direct method: We take the ICA components, identify
and remove artifact components, and then compute the
EMG features on the remaining components.

• Backprojection: We take the ICA components, identify
and remove artifact components as before, and then
back-project these components to the original signal.
Mathematically, this can be described as applying the
ICA decomposition, setting the artifact ICA components
to zero, and then multiplying the altered set of ICA
components with the inverse of the ICA matrix.

The ICA application in our baseline system [3] is a “direct
method” approach without component removal.

B. Artifact identification
For each session, artifact components are identified by the

following three measures, which are computed on the ICA
decomposition:

• Autocorrelation measure: This method typically iden-
tifies very regular (periodic) artifacts, like power line
noise. We compute the autocorrelation sequence of the
input component and then take the value of the first
maximum after the first zero of the sequence. If this
value is greater than 0.5, this component is deemed an
artifact.

• High-frequency noise detection: The surface EMG sig-
nal has frequency range of 0Hz - 500Hz [14]. There-
fore a component with distinct high-frequency parts is
considered an artifact. We compute the discrete-time
Fourier transform of the input component and divide
the frequency axis into two intervals: The “signal”
interval from 0Hz to 500Hz, and the “noise” interval
from 500Hz to 1024Hz (the Nyquist frequency). We
then compute the areas of the amplitude of the Fourier
transform over the two intervals and divide the “signal”
area by the “noise” area. If the quotient is smaller than
1.3, this component is deemed an artifact.

• EMG signal range: The main energy of the EMG signal
is found between 50Hz and 150Hz [14]. As before, we
divide the frequency axis into two parts: A “signal”
interval from 50Hz to 150Hz, and “noise” part from 0Hz
to 50Hz and from 150Hz to 1024Hz. Then we divide
the “signal” area by the “noise” area. If the quotient is
below 0.25, we deem this component an artifact. For
this measure, we found that the power spectral density
yielded slightly more robust estimates than a standard
Fourier transformation.

Note that the thresholds were determined on the development
set only. Our measures are first computed on each ICA
component of each utterance of the training data set. In
a second step, we combine the results: For a component
to be considered an artifact, we require that at least one
of the three methods considers this component an artifact
on a minimum percentage of (training) utterances. This
“threshold percentage” was varied between 10% and 50%,
where a lower value causes more components to be removed.
We observed that the threshold makes a difference when
components vary across utterances, e.g. when the contact
between electrode and skin deteriorates over time.

C. Results

The left part of figure 3 shows the Word Error Rates on
the development corpus for different threshold percentages
and for the two channel removal strategies. The direct
method works better than backprojection. The best result is
achieved with a 50% threshold percentage: Compared with
the baseline ICA system without channel removal, the aver-
age WER improves from 45.3% to 40.8%, which is a relative
improvement of 9.9%. For the backprojection method we
obtain higher WERs, the best result with backprojection is
42.1% WER. Note that the intra-session variance between
these results is rather high, so the results are only accurate
within a confidence interval of around ±10%.

The difference between the direct method and backpro-
jection is that in the former case, we compute features on a
subset of the ICA components, whereas in the latter case we
compute features on altered original EMG signals. Since in
[3] we observed that computing features on ICA components
yields better results than using the original EMG signals
even without any kind of artifact removal, the superiority
of the direct method had to be expected. We assume that
besides isolating artifacts, ICA extracts EMG sources which
are superimposed in the measured EMG signal; in section
VI we present evidence supporting this claim.

Finally, we applied our methods to the evaluation corpus.
The right part of figure 3 shows the results. The observations
are similar to the development corpus: applying the direct
method of artifact removal with a 50% threshold percentage
reduces the WER from 54.7% to 47.1%, i.e. by 7.6%
absolute or 13.9% relative. Using a threshold percentage of
10% is even a bit better (45.0% WER).

In order to statistically establish the validity of our pro-
cedure, we consider the WER reduction between the best
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baseline system (with ICA, no artifact removal) and the
optimal system as determined on the development corpus
(ICA, direct method, 50% threshold). Figure 4 shows the
WER reduction for all session of the evaluation corpus:
The average absolute WER reduction is 7.6%, with a 95%
confidence interval ranging from 1.3% to 13.9%. So we can
assert that our WER improvement is significantly greater
than 0%. One outlier session is observed.

Fig. 4. Word Error Rate improvement on evaluation corpus, between
baseline system with ICA and “direct method” artifact removal with 50%
threshold percentage. The shaded area indicates the 95% confidence interval.

VI. EMG SPATIAL PATTERNS
So far we have considered properties of the artifact com-

ponents which resulted from our ICA decomposition of the
EMG signal. We have shown that removing these artifact
components before feature extraction leads to improved
results, in particular when the features are computed on
the remaining ICA components. Why it is advantageous to
compute EMG features on the ICA components, instead
of the backprojected original EMG signals? It has to be
assumed that the EMG-like components which result from
the ICA decomposition capture properties of the articulatory
apparatus better than the original EMG signals.

We propose that ICA extracts localized EMG activity
sources, thus yielding a division of the input EMG signal
into activities related to different muscles or motor units.
In order to support this claim, one may consider the spatial
distribution of these ICA components, as follows:

Assume that in the EMG signal, the horizontal axis
represents time. Then left-multiplication with the ICA ma-
trix yields the ICA decomposition of the signal, and left-
multiplication of the ICA decomposition with the inverse of
the ICA matrix yields, of course, the original EMG signals.

The columns of the inverse ICA matrix are called spatial
patterns [15]. The j-th spatial pattern characterizes the spa-
tial distribution of the j-th ICA component, i.e. it indicates
how much an ICA component is observable at the measuring
points of the EMG array.

Figure 5 shows exemplary ICA patterns for the 28-channel
signal measured from the cheek array, where we manually
labeled the ICA components as artifacts or EMG-like. The
visualization shows the 28-element column of the inverse
ICA matrix, reshaped to the form of the EMG array. The right
side shows three typical signal components, each exhibits
a visible center where the respective ICA component is
strongest, and declining strength away from this center. The

Fig. 5. Typical ICA patters for artifact components (left) and EMG
signal components (right), on the 28-channel cheeck array. EMG signal
components exhibit a visible peak and declining activity away from the
center. Noise components show other patterns.

left side shows three typical artifact components: either the
spatial pattern of that component appears random (bottom
left), or the pattern is overly strong for very few single com-
ponents (top/middle left). We have observed such patterns
for a large number of ICA components and take these results
as a confirmation that ICA attains EMG source localization.
Our future work will include making use of EMG spatial
patterns to further improve the EMG feature extraction and
the modeling of phonetic features.
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