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Abstract— The feature extraction is an important step to
achieve multifunctional prosthetic control based on surface
electromyography (sEMG) pattern recognition. In this study, we
propose a new sEMG feature extraction method which is based
on autoregressive power spectrum (ARPS). An experiment with
a task containing thirteen motion classes was developed to
examine the effectiveness of this method. The results show
that the new feature, ARPS, has better performance comparing
with other two frequently used features, the time domain set
(TDS) and autoregressive coefficients (ARC). The ARPS obtains
the highest separability index (SI)—a metric measuring the
discriminative ability of the sEMG feature. And the average
classification errors of ARPS, TDS and ARC are 5.00%, 8.43%
and 6.39% respectively. This suggests that the ARPS is suitable
for the sEMG pattern recognition.

I. INTRODUCTION

The surface electromyography (sEMG) signal is the elec-
tric potential measured on the skin surface of a muscle.
It contains the control information from central nervous
system (CNS) and can be used to control electrical powered
prostheses [1].

Recently, a large number of studies describing sEMG
pattern recognition have been carried out to achieve the
multifunctional prosthetic control. Fig. 1 illustrates the basic
process of sEMG pattern recognition. During a user per-
forms a motion contraction, the preprocessed sEMG signals
(amplified, filtered and sampled) are firstly collected into
window data with appropriate length. Then, some sEMG
features are extracted from these window data by kinds
of signal processing methods. These features are fed into
the classifier which has been trained off-line. Finally the
classifier recognises which motion is executed by the user
to control the movement of prosthesis.

As we can see in Fig. 1, feature extraction is one of
most important procedures to obtain high sEMG pattern
recognition rate. Therefore many researches have been de-
veloped to extract useful features for representation of the
sEMG signals, such as time domain features [2], time-
frequency representation [3] and high order statistics [4].
Autoregressive (AR) model analysis was first used in [5], [6]
to fit sEMG signal for identifying different limb functions.
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Fig. 1. Schematic blocks of myoelectric control based on pattern recog-
nition.

Afterwards, many studies have adopted the AR coefficients
as the sEMG feature and proved the effectiveness [7], [8],
[9]. Furthermore, the power spectrum also has been used to
represent the sEMG signal [10]. Generally, previous studies
estimated the power spectrum based on discrete Fourier
transform and used the median frequency (MDF) or mean
frequency (MNF) as the sEMG feature. However, the per-
formances of these two features were weak [11].

In this study, a new sEMG feature extraction method based
on autoregressive power spectrum is proposed. Contrast to
the AR coefficients are used as the sEMG feature as in
[7], [8], we use the AR coefficients to estimate the power
spectrum of the sEMG signals. After that, the logarithmic
transformation is applied on the spectrum and only a sub-
band of the spectrum is used to suppress the effect of noise.
The usable band is segmented and each segment is averaged.
We verify the hypothesis that the segmented averages can
extract more information about the spectrum of the sEMG
signal, comparing with the MDF and MNF.

The experiment containing thirteen wrist or hand motion
classes was carried out to validate this assumption. The result
shows that this new kind of feature has an excellent capability
to represent the sEMG signals of different motions and can
improve the sEMG classification.

II. METHODS

A. Declaration

All recruited subjects had signed the informed consents
before experiment. The procedures conformed to the Decla-
ration of Helsinki.

B. Experiment Protocol

Five healthy males with intact arm participated in this
experiment. The Trigno Wireless System (DELSYS INC,
USA) was used to record the surface myoelectric signals.
Four wireless EMG sensors were placed on four forearm
muscles, namely, extensor carpi ulnaris, flexor carpi ulnaris,
extensor carpi radias and extensor digitorum, which were
found by palpation when the participant was instructed
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to perform hand motions. The sEMG signals were band-
pass filtered (20–450 Hz) and sampled at 2000 Hz by the
collecting system.

Before the experiment, the forearm skin was rubbed with
alcohol to provide good condition of sEMG signal acqui-
sition. The participant was instructed to naturally hang his
arm at side. The sEMG signals of twelve contraction classes
plus the rest class would be collected in the experiment.
These contraction classes are fist, open hand, wrist flexion,
wrist extension, radial deviation, ulnar deviation, pronation,
supination, fine pinch, key grip, ball grasp and cylinder grasp
as showed in Fig. 2. In each trial, the participant performed
one of the thirteen classes for 5 seconds with a 5 seconds
break between two adjacent classes. After each trial the
participant was given some minutes for relax. Totally 20
trials data were collected for each participant.

Fig. 2. Twelve contraction classes. From left to right and up to down
these are wrist flexion, wrist extension, radial deviation, ulnar deviation,
pronation, supination, fist, open hand, fine pinch, key grip, ball grasp and
cylinder grasp. Note that the rest class is not showed here.

C. Data Preprocessing

Only the centeral 4 seconds part of each 5 seconds
contraction data are used for analysis in order to remove the
transient state of the contraction. The data are segmented
into a series of 200ms windows with 50% overlap and the
sEMG features are extracted from each of these windows.

D. Feature Extraction

In this section, we introduce the sEMG feature extraction
method depending on autoregressive power spectrum. First,
the autoregressive power spectrum [12] of the windowed
sEMG signals can be computed as

s(n) =

p∑
k=1

aks(n− k) + e(n) (1)

P̂AR(ejω) =
ρ̂e

|1 +
∑p

k=1 ake
−jωk|2

(2)

Equation (1) defines the sEMG signals s(n) as a p order AR
model. ai is the ith AR coefficient and the innovation e(n) is
regarded as the Gaussian white noise. Equation (2) computes
the autoregressive power spectrum depending on the model
constructed in (1). Where ρ̂e is the power estimation of e(n).

After the autoregressive power spectrum is computed, the
logarithmic transformation is applied on it to make it more
smooth and suppress the effect of noise. Only the spectrum
of 20-450 Hz (note that he signals have been bandpass
filtered by hardware in 20-450 Hz) is used to eliminate
the motion artifacts and the high frequency noise. And then
the spectrum (20-450 Hz) is divided into N frequency bins
and the components in each bin are averaged. Therefore we
obtain a N dimensional feature vector from one channel of
the windowed sEMG signals. Fig. 3 shows the autoregressive
power spectrum of the sEMG signals and the logarithmic
transformation of it.

The order p is chosen as six [7] and the number of
bins N is chosen as ten. Therefore a 40 (4 × 10 = 40)
dimensional feature vector for each frame of sEMG signals
is obtained. We denote this new kind of sEMG feature based
on autoregressive power spectrum as ARPS. We compare this
new kind of feature with other two frequently used features
to prove the effectiveness of the method proposed.

• The time domain feature set [13] contains mean absolute
value, waveform length, zero crossing and slope sign
changes (dimension of the feature vector is 16, 4×4 =
16 and is denoted as TDS).

• The autoregressive coefficients. The order p is equal to
ARPS (dimension of the feature vector is 24, 4×6 = 24
and is denoted as ARC).

E. Performance Evaluation

1) Separability Index: Before classification, some criteria
can be used to quantitatively measure the separability of
the sEMG features [14]. The Bhattacharyya distance (BD)
[15] providing the upper and lower bounds of the Bayes
classification error is adopted to define the separability index
(SI) as

SI =
2

C(C − 1)

C−1∑
i=1

C∑
j=i+1

BDij (3)

and

BDij =
1

8
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2
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2
|√
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where C is the number of motion classes, µi and µj are the
centroid of class i and class j. Σi and Σj are the covariance
of class i and class j respectively. A higher SI indicates
the sEMG features of different motion classes are more
distinguishable. That is, the feature extracted is more suitable
for sEMG pattern recognition.

2) Classification: The linear discriminative analysis (L-
DA) [13] is adopted to classify the thirteen motion classes.
It has equivalent performance comparing to other complex
classifiers while needs less computing time. Half of the 20
trials data are used as training data to construct the classifier
and the other half are used as testing data. The performance
of the constructed classifier is measured by the classification
error, which is defined as
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Fig. 3. Autoregressive power spectrum of sEMG signals (a) and its
logarithmic transformation (b). Horizontal axis is normalized to 1000 Hz
(half of sample rate). Yellow area means frequency band (20-450 Hz) used
to extract feature.

Number of falsely classfication samples
Total number of testing samples

× 100(%) (5)

Three different classifiers are constructed by the three dif-
ferent features (TDS, ARC and ARPS). Their performances
are compared to inspect if the new feature extraction method
proposed can improve the sEMG classification.

III. RESULTS

The SI of the three sEMG features are summarized in
Table I. The SI of ARPS is the highest for every participant
(average 77.77). This shows that the ARPS has superiority
for sEMG classification.

Fig. 4 shows the classification errors over five participants
by using the three sEMG features. For every participant, the
ARPS obtains the lowest classification error. The ARC has
better performance than the TDS. In addition, the difference
of classification error among the participants is significant
(for example, see the difference between P2 and P3). This
may be attributed to the different sEMG experiment experi-
ences among them [16]. The average classification errors of
TDS, ARC, and ARPS across five participants are 8.43%,
6.39%, 5.00% respectively as showed in Fig. 5. Owing to
the significantly different performance among participants,

TABLE I
SEPARABILITY INDEX OF THREE SEMG FEATURES

Feat. P1 P2 P3 P4 P5 Mean
TDS 33.52 28.30 33.57 28.12 26.17 29.94
ARC 52.38 30.70 26.95 24.87 30.36 33.05
ARPS 119.33 62.81 88.26 48.91 69.57 77.77

the two-way analysis of variance is adopted. The analysis
shows the classfication error of ARPS is significantly lower
than that of TDS (p = 0.01) and that of ARC (p = 0.02).

Fig. 6 shows the average classification errors of specific
motion classes. Comparing with TDS, the classification error
of each motion class of ARPS is lower except the key grip.
Comparing with ARC, the classification error of each motion
class of ARPS is lower except the wrist flexion and fine
pinch. The most evident improvements between ARPS and
ARC occur in the fist, radial deviation and ball grasp. In
addition, the classification errors of fine hand movements
such as key grip and ball grasp are higher than that of raw
hand movements or wrist movements such as open hand and
wrist extension. How to extract more sEMG information
about the fine hand movements from the bulk of forearm
is still an open issue. This is very important to achieve
the multifunctional prosthetic control for the transradial
amputees.

Fig. 4. Comparing classification errors of five participants among three
sEMG features, TDS, ARC and ARPS. Horizontal axis means participants.

Fig. 5. Comparing average classification errors among three sEMG
features, TDS, ARC and ARPS.
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Fig. 6. Comparing average classification errors of specific motion classes among three sEMG features, TDS, ARC and ARPS.

IV. DISCUSSION AND CONCLUSION

The commonly used feature extraction method based on
autoregressive model employs the autoregressive coefficients
as the pattern of the sEMG signals. In this study, we proposed
a new sEMG feature extraction method based on autoregres-
sive power spectrum. A metric—SI based on Bhattacharyya
distance which is independent of specific classifier shows
the superiority of the new feature for recognizing different
motions. In addition, the new feature, ARPS, obtains the
lowest classification error (average 5.00%) when the LDA
is constructed comparing with other two features (average
8.43% and 6.39%). Actually, the ARC feature and the ARPS
feature are both based on autoregressive model. The reason
that the ARPS feature outperforms the ARC feature may be
the following two points.

• The denominator in the right side of the equation (2)
contains all the autoregressive coefficients. Therefore
the ARPS extracts more information from the sEMG
signals than the ARC, that is, the power of innovation
ρ̂e. This additional information may contribute to the
discrimination of different motion classes.

• The logarithmic transformation is adopted and only the
frequency band of 20-450 Hz is used to extract the
ARPS feature. These steps can further reduce the effect
of noise and make the feature more robust.

In conclusion, the new sEMG feature extraction method
proposed here is effective and suitable for the sEMG pattern
recognition.
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