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ABSTRACT

This paper presents a new embeddable method for polyp detections
in Wireless Capsule Endoscopic - WCE images. this approach con-
sists first of extracting candidate polyps within the image using geo-
metric considerations about related shape, and second, in classifying
(polyp/non-polyp) obtained candidates by a boosting-based method
using texture features. The proposed approach has been designed
in accordance with the hardware constraints related to FPGA imple-
mentation for integration within WCE imaging device. The classi-
fication performance of the method have been evaluated on a large
dataset of 300 polyps, and 1200 non-polyps images. Experiments
show interesting and promising performance: the boosting-based
classification is characterized by a sensitivity of 91%, a specificity of
95% and a false detection rate of 4.8%, the detection rate of the over-
all processing chain being of 68%. The performance of the boosting-
based classification are in accordance with the most recent reference
on this particular topic using the same dataset. Building of a ded-
icated WCE image database should permit the improvement of the
global detection rate.

Index Terms— Colorectal cancer, polyp, WCE, videoen-
doscopy, boosting, co-occurence matrix.

1. INTRODUCTION

Colorectal cancer (CRC) is the first cause of death by cancer in
developed countries, with an estimated incidence of 728.550 cases
worldwide in 2008, with fatal outcome in 43% of cases. Overall,
CRC is the third more frequent cancer after lung cancer and breast
cancer [1]. Prevention of CRC by detection and removal of pre-
neoplastic lesions (colorectal adenomas) is therefore of paramount
importance and has become a worldwide public health priority. Cur-
rently, colonoscopy is the “gold standard” technique for diagnosis
of colorectal adenoma and cancer. Colonoscopy is performed under
general anesthesia, mini-invasive techniques such as computed-
tomography-based colonography and wireless capsule endoscopy
(WCE) have been developed. Both techniques are currently consid-
ered valid alternative options to videocolonoscopy in patients with
contra-indication or low compliance to general anesthesia. WCE
takes form of a pill equipped with a camera, two batteries, and a
RF (radiofrequency) transmitter, that enables the off-line identi-
fication of gastrointestinal abnormalities such as ulcers, blood and
polyps [2]. Many fabricants such as Given Imaging, IntroMedic, and
Olympus [3] have developed a variety of capsules for the complete
examination of the gastrointestinal tract. After ingestion of the cap-
sule, about 50,000 images are captured along the digestive tract and

each of them are wirelessly transmitted to a wearable receiver and
saved for a postponed physician’s reading. The off-line image pro-
cessing enables the identification of gastrointestinal abnormalities
like the aforementioned polyps and adenoma.

However, the complete analysis of the 50,000+ images is time-
consuming for physicians, and even for experienced ones, WCE di-
agnoses are sometimes challenging. Finally, the transmission of the
50,000+ images, that represents 80% of the overall energy consump-
tion of the embedded batteries, limits to 8 hours the autonomy of the
classic WCE, whereas 12 hours are necessary to scan the complete
intestinal track.

In the context of early diagnosis of colorectal adenoma and can-
cer, main aim of the “Cyclope” project is to propose a new gener-
ation of WCE(see Fig. 1 for illustration) that will permit an in situ
detection of the polyps and, consequently, to only emit the images
which are important for the final diagnosis. In [4] and [5], a first
prototype demonstrator was proposed with a particular focus on the
recognition of three-dimensional colon polyps captured by an ac-
tive stereo vision sensor. The proposed detection algorithm used a
SVM classifier trained on robust 3D feature descriptors. The overall
detection performance were very promising with a global classifi-
cation rate of 97% on an in vitro dataset consisting of 111 polyps
(40 adenomas and 81 hyperplasias) made in silicon. Nevertheless, it
appears that for real case examination, 3D features are not sufficient
to detect the large variety of polyp shapes that can be very flat at an
early evolution stage.

Fig. 1. Block Diagram of the “Cyclope WCE”

In this article, we give a particular focus on the 2D analysis of
the videoendoscopy images in order to investigate other possibilities
than 3D shape characterization of polyps to improve capabilities of
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WCE. As in [4], a particular attention will be given to propose a
global detection/classification scheme that can be integrated within
the “Cyclope”-WCE architecture shown in Fig. 1.

The remainder of this article organized as it follows: a state-of-
the-art on detection of polyps in videocolonoscopy using 2D features
is proposed in Section 2. In Section 3, the proposed approach is
detailed. Experimental results are given in Section 4. Discussion
and conclusion are given in the last Section.

2. RELATED WORKS

Several previous works have considered the detection of intestinal
polyps in videocolonoscopy images. They are mainly divided into
two categories: those based on geometric features of the polyps (size
and shape) and those based on textural features. Bernal et al. [6]
propose a study made on videoendoscopies images. They devel-
oped a region descriptor based on the depth of valleys (SA-DOVA).
Resulting algorithm, constituted of several steps (region segmenta-
tion, region description and region classification), is characterized
by promising detection and classification performances.

In [7], Figueiredo et al. assume that polyps show up as protru-
sions that can be detected using the local curvature of the image.
Consequently, a method based on the mean and geometric curvature
of the WCE image is proposed, differentiating the polyps from no
protruding images. The main drawback of the proposed approach
is the reliance only on the protrusion measure of the polyp to iden-
tify potential candidates. The consequence is that if a polyp is not
protruding enough from the surrounding mucosal folds it may be
missed.

Kodogioannis and Boulougoura [8] propose an approach based
on the texture of the WCE images. Authors introduce new texture
features in the texture spectra of chromatic and achromatic Region of
Interest (ROI). For classification, a neurofuzzy scheme is proposed.
Main result is that the textural information is of first importance for
the discrimination between polyps and non-polyps.

Finally, in [9], Karargyris and Bourbakis propose an algorithm
for WCE images mainly based on Log Gabor filters and Susan edge
detector. Based on the geometric information of the resulting de-
tected ROI, a level-set segmentation is then initialized for an ac-
curate delineation of the polyps. On the considered WCE image
database (10 polyps and 40 non-polyps), the method gives satisfying
results but authors highlight that inclusion of textural or color fea-
tures within the detection/classification scheme would significantly
increase related performance.

Table 1 summarizes the obtained performance of these four main
contributions. All four presented approaches for polyp detection and
classification are definitely of primary interest, but does not compel
to the hardware constraints of Cyclope architecture since the detec-
tion algorithm is to be embedded in the FPGA block of Fig. 1 of
limited resources. This can be explained by the fact that all devel-
oped approaches were designed for an off-line use mainly. It also
appears that image databases used for performance estimation are
size-limited or not freely available for possible comparison, except
[6]), more particularly when considering WCE images. Taking ben-
efits of the aforementioned reference, and taking into account the
heavy hardware constraints of “Cyclope” WCE, we propose in this
article a learning-based polyp detection approach using texture de-
scriptors. In order to compare related performance to the most recent
literature, we will use for illustration the database freely provided by
[6].

Authors Classification per-
formance Database

[6] Sensitivity 89%
Specificity 98%

300 videocolonoscopy
images containing a
polyp (freely avail-
able)

[7] No indicated per-
formance

17 WCE videos of 100
images each, contain-
ing example of polyps
(10), flat lesions, di-
verticula, bubbles, and
trash liquids

[8] Sensitivity 97%
Specificity 94%

140 WCE images (70
polyps and 70 non-
polyps)

[9] Sensitivity 100%
Specificity 67.5%

50 WCE images (10
polyps and 40 non-
polyps)

Table 1. Features of the polyp’s detection methods

3. PROPOSED APPROACH

In this section, we present an empirical methodology for detecting
polyps in the colon that could be implemented in hardware. The
method is composed by the abstraction of the methodology used
by the physician when doing an endoscopic examination: To make
a pre-selection of images that may contain a polyp, the physician
looks for structures with a specific size and a circular shape. This
first pre-selection allows the physician to scan the image in a glance
detecting some possible abnormal regions of interest (ROI). Once
the ROI is detected, a second visual analysis, based on texture (ho-
mogeneity, granularity, coarseness...) is achieved. Taking benefits
of this physician’s approach, we propose a global scheme for the
detection/classification of possible polyps which is summarized in
figure 2. Considering the geometric step of the proposed approach,

Fig. 2. Global scheme for the detection of polyps

simple image processing tools make possible the detection of circu-
lar/elliptical shape like the Hough transform for instance. The tex-
tural classification is the main keypoint of the global scheme since
the rejection of most of the false positive preselected ROI have to
be performed at this stage. To achieve this, we propose to design an
ad hoc classifier based on a boosting-based learning process using
textural features.

3.1. Geometric features

As mentioned before, the first useful characteristics for preclassifi-
cation are size and shape of candidate structures. To obtain the mis-
trustful ROI (Region Of Interest), an algorithm based on the circular
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form of the polyps is implemented. Instead of using the curvature
or the Log-Gabor filtering, as suggested in [9], the circular Hough
transform is used for three reasons; firstly, processing remains sim-
ple and efficient; secondly, all polyps must be detected even if nu-
merous false positive ROI are also considered; thirdly, the Hough
transform can be embedded in FPGA like shown in [10] for an in
situ and real-time detection.

3.2. Textural features

For the textural analysis of pre-detected ROI, the co-occurrence ma-
trix [11] is used to discriminate textural patterns of polyps and non-
polyps. Mainly, these matrices calculate how often a pixel with grey-
level value i occurs either horizontally, vertically, or diagonally to
adjacent pixels with the value j. One main advantage of those ma-
trices is that their computation has recently been implemented on
FPGA [12].

Twenty-six features (known as the Haralick’s features) are then
extracted from each of the computed matrices (Energy, Entropy, Ho-
mogeneity, etc.). Since the textural classification will be performed
by using a boosting based algorithm, no limitation about the num-
ber of parameters is considered: the main idea is to let the learning
process converge to the best choice without any prior information.

3.3. Classification

The boosting is a machine learning algorithm for supervised learn-
ing (see [13] among other publications of the same authors). It
consists of the accumulation and constant learning of weak clas-
sifiers (a weak classifier is considered slightly correlated (just lit-
tle better than chance) with the true classification), that once com-
bined together generate a strong classifier, well-correlated with the
true classification. Considering the proposed approach, we used the
boosting method of [14] set-up in attentional cascade. This config-
uration makes possible the computation of a strong classifier with
a greater value of true positives (TP) whereas the value of false
positives (FP) is reduced drastically. As for Hough transform and
cooccurrence matrices, Attentional Cascade has been recently im-
plemented in FPGA [15]. For our purpose, the considered weak
classifiers are based on a truncated binary decision tree built from
the 26 textural parameters computed for each example of the related
learning database.

4. EXPERIMENTS

Tests were performed on the database proposed by J. Bernal from
the Universitat Autonoma de Barcelona [6], which consists of 300
images from videoendoscopies in which polyps were identified and
segmented by a specialist. The data have been courtesy made avail-
able by authors. To our knowledge, in the particular framework of
colorectal polyp detections, this is currently the only existing on-
line database with a sufficient amount of examples to be statistically
meaningful. To create an exploitable learning database each image
of the main dataset was sub-divided into five thumbnails, as shown
in figure 3. A first ROI corresponds to the polyp (a), and the other
four to non-polyps (b-e). The resulting database is composed of
a total of 1500 images, with 300 images of polyps and 1200 im-
ages of non-polyps. To evaluate the performances of the proposed
learning method, three measures are usually considered meaningful
and complementary. Those are, the sensitivity, the specificity and
the false positive rate (FPR) defined as: Sensitivity = TP

TP+FN
,

Specificity = TN
TN+FP

, FPR = FP
FP+TN

with TP , FN , TN ,

Fig. 3. Example on how the learning/testing database of 1500 images
is generated.

FP standing for true positive, false negative, true negative and false
positive.

4.1. Geometric performance

In table 2 the detection performance of the Hough transform on the
aforementioned database are shown and compared to the Log Gabor
filtering of [9].

Sensitivity Specificity
Hough transform 94% 15%
Log-Gabor 42% 89%

Table 2. Comparison of the detection sensitivity of the Hough trans-
form and the Log Gabor filtering approach of [9] on the considered
polyp/non-polyp database.

At this stage, it can be noticed that the simple Hough transform
allows a good detection of ROI containing a polyp. Even if the value
of specificity is low, the next classifying step will allow to improve
the performances of the overall method.

4.2. Learning-based classification performance using textural
features.

For these experiments, the polyp/non-polyp database were divided
into two subgroups: A first one composed of 1000 images (200 im-
ages of polyps and 800 of non-polyps) for the learning process and
a second group for testing composed of the remaining 500 images.
Different kinds of methods for classification were compared: Learn-
ing Vector Quantization technic (LVQ) [16], classic Adaboost and
finally Attentional Boosting (cascade adaboost). The results of this
experimentation are shown in Table 3: the most efficient approach
was the Attentional Boosting. One can also notice in Tab. 3 that the

Type Adaboost Sensitivity Specificity FPR
Real Adaboost 77% 92.5% 7.5%

Attentional 91% 95.2% 4.8%
LVQ classification 92% 86% 14%

[6] 89% 98% 2%

Table 3. Performance comparisons among different types of classi-
fication approaches, including adaboost and attentional boosting.
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classification performance resulting from the boosting process are
not that far from the classification performance of [6] on the same
image database, even if their obtained Specificity remains at a higher
level.

4.3. Examples of detection and classification results

In figure 4 some examples of detection/classification are shown.
ROI that are skirted by a non-bolded plain rectangle are the canidates
issued from the Hough transform step of the proposed approach.
ROI skirted by a bold plain rectangle are those which are effectively
identified as a polyp after the textural classification. In the two-first

(a) (b)

(c)

Fig. 4. Three examples of detection/classification of polyps in three
different images extracted from the database:

cases, the single polyp is detected and well classified. The third one
shows nine detected ROIs from which only three are classified as
polyps, including the one containing the real polyp. In figure 4.(c),
the misclassifications are errors probably made by the insufficient
number of examples in the database used for the learning step. This
is the main drawback of the proposed approach, since, because of the
insufficient representativity of the generated database, the detection
rate of the entire scheme is only of 68%. Nevertheless, classification
results remain promising since many FP ROI are discarded after the
textural classification step.

5. CONCLUSION

In this paper, we introduced a new method for detection of polyps in
videoendoscopic examinations, based on the physician’s approach.
The entire detection chain combines geometric and textural features
for polyp characterization: if the first geometric step remains sim-
ple with the use of the Hough transform, the textural features com-
puted from co-occurrence matrix are integrated within a boosting-
based approach making possible to achieve good classification per-
formances similar to those of the most recent state-of-the-art article
[6] on the same database. At last, the complete developed detec-
tion/classification scheme is in accordance with a hardware imple-
mentation (Hough transform [10], boosting classification [15] and
co-occurence matrices [12]). An effort should be made now to im-
prove the overall detection rate of the proposed method and to build
a significant database of images taken from WCE videos, which re-

mains a primary objective of “Cyclope” project for a real-time in situ
detection of polyps.
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