
  

  

Abstract— Many functional tasks require regulating 

appropriate forces or torques even under unpredictable 

disturbances. However, how this regulation can be achieved 

remains poorly understood. Limb impedance describes the 

relationship between externally imposed displacements to the 

limb and the changes in force or torque generated in response. 

Low limb impedance is preferred during torque regulation 

tasks. However, low-frequency impedance increases with 

muscle activation, which is counterproductive to torque 

regulation. The purpose of this study was to quantify the ability 

to voluntarily reduce limb impedance during torque regulation 

tasks, and to assess if the observed performance is near optimal 

given the challenges posed by activation-dependent muscle 

properties and time delays in the neuromuscular system. By 

examining elbow impedance measured in experiments and 

predicted by a biomechanical model with an optimal controller, 

our results demonstrated that individuals can reduce the 

low-frequency components (below 1Hz) of elbow impedance 

during forceful contractions, and that this performance is 

similar to those predicted by an optimal feedback controller. 

These findings suggest that neural feedback can compensate for 

intrinsic muscle properties in a near-optimal manner, thereby 

allowing torque to be regulated at frequencies below ~ 1 Hz. 

I. INTRODUCTION 

Many functional tasks, including the handling of delicate 
objects, require producing and regulating appropriate 
endpoint forces or joint torques even in the face of 
unpredictable disturbances. Though the ability to generate 
constant forces has been studied extensively [1, 2], how such 
forces can be maintained when interacting with unpredictable 
environments remains poorly understood. 

Maintaining a constant force or torque when perturbed 
requires low impedance. Limb impedance describes the 
relationship between externally imposed displacements to the 
limb and the changes in force or torque generated in response 
[3]. For small perturbations limb impedance can be 
approximated by the inertia, viscosity and stiffness of the 
limb. Inertia dominates the limb impedance for rapid 
perturbations, and remains constant for a given posture. For 
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slower perturbations (<~2Hz for human arm), arm impedance 
is largely described by stiffness, which increases with muscle 
activation [4]. This activation-dependent stiffness is 
advantage when trying to regulate position, but it would limit 
the ability to regulate force or torque in the presence external 
disturbances since high stiffness leads to a high change in 
force or torque for an imposed displacement. 

The central nervous system (CNS) may employ feedback 
to compensate for the counterproductive effects of intrinsic 
muscle properties during torque regulation tasks. When 
sensing the change of torque caused by an external 
perturbation, the CNS could adjust muscle activations to keep 
muscle force and the corresponding net torque about the 
relevant joints constant. Mugge et al. [5] showed that 
low-frequency ankle impedance can be regulated in torque 
control tasks to be lower than that when subjects were 
instructed not to react to imposed perturbations. The lowered 
impedance was attributed to the reflexive force feedback 
from Golgi tendon organs. However, the subjects were only 
required to maintain a passive baseline torque caused by the 
weight of the foot, thereby requiring no muscle activation. 
Tasks that require non-zero muscle forces are likely to be 
more challenging due to the force-dependent increase in 
muscle stiffness. Stretch reflexes that increase muscle 
stiffness also increase with muscle activation [6]. Therefore, 
it remains unclear to what extent humans can reduce limb 
impedance during tasks that require active torque generation. 

The purpose of this study was to quantify the ability to 
voluntarily reduce limb impedance during torque regulation 
tasks, and to assess if the observed performance is near 
optimal given the counterproductive intrinsic properties of 
muscles and the time delays inherent in the neuromuscular 
system. This was accomplished by experimentally 
quantifying elbow impedance during the exertion of 
volitional torques at 10% and 20% of maximum voluntary 
contraction (MVC). Two tasks were considered: a “do not 
intervene” (DNI), in which subjects were instructed not to 
respond to the perturbation, and a “torque control” task, in 
which subjects were instructed to keep the elbow torque 
constant even when perturbed. We hypothesized that subjects 
would be able to reduce low-frequency impedance during the 
torque control task. To examine if this compensation is 
near-optimal, a simple biomechanical model of elbow was 
constructed that incorporated the activation-dependent 
stiffness properties of muscles and a delayed optimal 
feedback pathway to regulate torque. Our results highlight 
the importance of feedback in compensating for the intrinsic 
properties of muscle during torque control tasks. 
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II. METHODS 

A. Experiment 

1) Subjects 
Ten subjects (7 men and 3 women) with an age range of 

23~45, and no prior history of neurological disease or injury 
to the elbow, participated in this study. All experimental 
procedures were approved by the Institutional Review Board 
of Northwestern University (IRB protocol STU00009204) 
and required informed consent. 

2) Equipment 
Subjects were seated in an adjustable chair (Biodex, NY); 

movement of the trunk was minimized using straps placed 
across the torso (Fig. 1). The wrist joint was immobilized in 
neutral position using a custom-made plastic cast. The cast 
was attached to a rotary motor, aligned such that the motor 
axis was in line with the elbow flexion/extension axis. The 
rotary motor (BSM90N-3150AX; Baldor Electric Company, 
Fort Smith, AR) was controlled using Matlab xPC

®
. It was 

configured as a rigid position servo with a stiffness of 
35kNm/rad, and used to apply small angular position 
perturbations to the elbow joint. Elbow moments were 
measured using a six degree-of-freedom load cell (630N80; 
JR3, Inc, Woodland, CA). Displacements were measured 
using an encoder with an effective resolution of 6.3x10

-5
 rad. 

 

Figure 1.  Experimental setup. The right forearm of each subject was 

positioned in the horizontal plane at a nominal posture of 90° shoulder 
abduction, 30° shoulder flexion and 70° elbow flexion. 

3) Protocol 
MVCs were collected at the start of each experiment and 

later used to normalize the target torque to the strength of 
each subject. Before the main experiment, subjects were 
given specific instructions about how to perform the DNI and 
the torque control tasks. For both tasks, subjects were first 
instructed to exert a specified torque against rotary motor, 
and to maintain that torque for 5 seconds. After this time the 
perturbation commenced, lasting for 35 seconds. During the 
DNI task, subjects were instructed to keep the muscle 
activation the same as before the perturbation started, and not 
to react with the perturbation. For the torque control task, 
subjects were instructed to keep their torque constant by 
voluntarily activating their muscles, as needed. Two target 
torque levels, 10% and 20% MVC, were evaluated for each 
task. All target torques were in elbow flexion. 

Visual feedback of elbow torque was provided to assist 
with task completion. The feedback was filtered differently in 
each task. In the DNI task, the visual feedback was filtered 
by a 2

nd
 order low-pass Butterworth filter with a cutoff 

frequency of 0.1Hz to prevent drift from the target torque, 
while also reducing visual information related to the applied 
perturbation. For the torque control task, the visual feedback 

was filtered by a 2
nd

 order low-pass Butterworth filter with a 
cutoff frequency of 2Hz, to allow for subject intervention. 
The feedback was scaled to keep the variance of the 
displayed torque constant for all tested torque levels.  

Each subject completed a training session of about 1 hour 
to become familiar with the tasks. On a separate day, the 
testing session evaluated the two tasks (DNI and torque 
control), each at two levels of MVC (10% and 20%). Each of 
these 4 conditions was repeated three times, yielding a total 
of 12 trials. The trials were grouped into two randomized 
blocks according to task; within each task block, trials were 
randomized in terms of MVC level. A one-minute rest period 
was imposed between trials to avoid fatigue.  

Stochastic displacement perturbations were used to 
estimate elbow impedance. These consisted of a “full power” 
component with a flat power spectra up to 1Hz and an 
amplitude (std. dev.) of 1.5 degrees, and a “reduced power” 
component with an amplitude of only 0.3 degrees but power 
up to 20 Hz, so that the impedance of the elbow could be 
characterized adequately [7]. 

4) Data Analysis and Statistics 
The ability to maintain a constant torque in the presence 

of stochastic perturbations was assessed by comparing the 
standard deviation of the measured torque and the elbow 
impedance estimated during the DNI and torque control tasks. 
All analyses were performed on the final 30-seconds of 
collected data, to avoid possible transients at the beginning of 
each perturbation. Nonparametric system identification [8] 
was used to estimate the elbow impedance transfer functions. 
The estimated transfer functions were scaled by the 
subject-specific target torques at 10% and 20% MVCs, so as 
to facilitate comparisons across subjects. 

The hypothesis that low-frequency impedance is smaller 
in a torque control task than in a DNI task was tested at each 
frequency up to 10Hz using a linear mixed effect model with 
subject as a random factor. The same analysis was used to 
assess the task-dependent change in the standard deviation of 
the torque. All analyses were performed in MATLAB

®
. 

Significance was tested at the level of 0.05. 

B. Modeling and Simulation 

A biomechanical model of the elbow was constructed in 
Matlab/Simulink (The Mathworks, Natick, MA) to examine 
whether the performance in the torque control task was 
similar to optimal feedback control (Fig. 2). The elbow joint 
was approximated by a 2

nd
 order system containing inertia (I), 

viscosity (B) and stiffness (K), which were matched to the 
average values identified across all subjects. The stiffness K 
was assumed to vary linearly with joint torque, a reasonable 
assumption for this range of torques [9]. Changes in joint 
torque were assumed to arise from changes in muscle 
activation. Muscle activation dynamics were modeled as a 
linear 2

nd
 order system with a low frequency gain of 1.6, a 

natural frequency of 2.4Hz and a damping ratio of 1.2 [10, 
11]. This feedforward model was used to simulate the DNI 
task. A separate feedback loop with time delays was used to 
simulate the torque control task, in which the neural 
controller was approximated by an optimal linear quadratic 
regulator (LQR) [12] of the linearized system.  
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Figure 2.  Block diagram of the simulated biomechanical model of the 

elbow. Muscle block contains muscle activation dynamics. Tout represents 

torque output. The DNI task was simulated by feeding the Tref directly to the 

comparison point without the LQR controller and feedback loop, as 

highlighted by the blue pathway and dashed box. 

Both tasks were simulated for a target torque (Tref) 
corresponding to 10% of the average MVC (6.2Nm) recorded 
for all subjects. Two transmission delays (100 and 200ms) 
were considered based on a separate analysis of muscle 
activities, which showed that the activation of the elbow 
flexors muscles started to differ between two tasks within this 
time window [13]. Separate feedback controller parameters 
were estimated for each delay. The perturbation used in this 
simulation study had the same spectral characteristics as that 
used in the experiments. The impedance transfer function of 
the resulting model was obtained by linearization within 
Simulink. The simulated impedance transfer functions were 
scaled by the target torque, as was done in the experiment. 

Previous studies [10, 11] have shown that muscle 
activation dynamics can have quite variable natural 
frequencies and damping ratios. Thus, Monte Carlo 
simulations were used to evaluate the sensitivity of the model 
to these parameters. For each set of simulations in the torque 
control task, these two parameters were selected from 
uniform distributions ranging from 1 to 5Hz for the natural 
frequency, and from 0.5 to 1.5 for the damping ratio based on 
plausible ranges shown in previous experimental studies [10, 
11]. Two hundred simulations were performed, and the 
results quantified by the standard deviation of the impedance 
transfer functions estimated across all simulations. 

III. RESULTS 

Subjects were able to complete the torque control task, 
reducing the change in elbow torque due to the applied 
perturbations, relative to that measured during the DNI tasks. 
This was first demonstrated by the reduced low-frequency 
torque amplitude in the torque control task (Fig. 3A). 
Accordingly, the standard deviation across all subjects in this 
task was significantly lower than that in the DNI (10%MVC: 
F1,9 = 10.9, P = 0.0093; 20%MVC: F1,9 = 10.8, P = 0.0095; 
Fig 3B). This reduction was not due to changes in the mean 
torque between two tasks (10% MVC: F1,9 = 1.4, P = 0.27; 
20%MVC: F1,9 = 0.0, P = 0.998; Fig. 3C). 

This ability to control torque was associated with reduced 
low-frequency elbow impedance during torque control. 
Below ~1 Hz, the impedance magnitude was smaller in the 
torque control task than in the DNI task at both 10% and 20% 
MVCs (Fig. 4). In the range of 1~4Hz, there was a small 
increase of elbow impedance during the torque control task 
relative to the DNI task. In the range above 4 Hz, elbow 
impedance showed no significant difference between two 

tasks. This is because the limb inertia dominated impedance 
in this frequency range and remained invariant across tasks. 

 

Figure 3.  (A) Raw torque trajectories from subject S5. The subject was 

exerting a torque of 10% MVC during the DNI task (upper trace) and the 

torque control task (lower trace). (B) The comparison of the average 

standard deviation of the torques measured in each task. (C) Comparison of 

the average of measured torques. Error bars indicate standard deviations. 

The asterisks ** correspond to a significant difference (P < 0.01). 

 

Figure 4.  Group average of stiffness transfer functions estimated in DNI 

(solid curve) and torque control (dashed curve) tasks. The bars at the top of 

each panel indicate frequencies for which the impedance gain was 

significantly different (P < 0.05) between tasks.  

The simulation of our biomechanical model with the LQR 
controller behaved in a manner similar to the experimental 
results (Fig. 5). The simulated impedance transfer functions 
resembled the overall trend of those estimated in experiment. 
Below ~0.9Hz, the simulated torque control task had a lower 
impedance gain than the simulated DNI task. When the 
transmission delay increased from 100ms to 200ms, the low 
frequency portion of the impedance transfer function shifted 
to the right, such that the impedance during the torque control 
task was lower than that in the DNI task only for frequencies 
less than ~0.5 Hz. This range in which the impedance during 
experimental torque control task was less than that during the 
DNI task was consistent with the range estimated across all 
subjects (0.86±0.35Hz, Fig. 5 shaded area). 
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Figure 5.  Simulated DNI and torque control tasks. The circle with the 

error bars and shaded area indicates the average frequency (standard 

deviation) experimental torque control transfer functions began to be lower 

than the DNI transfer functions. The dash-dotted curves shows one standard 

deviation of the Monte Carlo simulations in torque control task. 

The impedance of the simulated system was not sensitive 
to the natural frequency or the damping ratio of muscle 
activation dynamics. As these parameters were varied over 
the range of physiologically plausible parameters, the 
simulated impedance transfer function only varied 
moderately (Fig. 5, dash-dotted curves). The frequencies at 
which the transfer functions in the simulated torque control 
task started to have a lower gain than those in the DNI task 
varied by less than 0.2 Hz for a simulated delay of 100ms, 
and by less than 0.1Hz for the simulated delay of 200ms. In 
contrast, the transmission delay has a larger impact on 
determining how the elbow impedance is regulated than the 
parameters used to describe the muscle activation dynamics. 

IV. DISCUSSION 

This study examined how well humans can maintain a 
voluntary joint torque in the presence of unpredictable 
perturbations. This was achieved by estimating elbow 
impedance during DNI and torque control tasks when 
subjects were exerting nonzero baseline torques. Our results 
demonstrated that individuals can reduce the low-frequency 
components of elbow impedance during forceful contractions. 
These experimental results were similar to those predicted by 
an optimal feedback controller designed to minimize elbow 
torque variance in response to unexpected perturbations. The 
combined results from our experiment and simulation 
demonstrate how appropriate feedback can compensate for 
the intrinsic stiffness properties of muscles, thereby allowing 
torque to be regulated for frequencies below ~ 1 Hz. 

Our finding that elbow impedance can be lowered below 
~1 Hz is consistent with previous human operator and 
prosthetic control studies. In those tracking tasks, 
performance deteriorated above ~0.7Hz and became 
completely ineffective above ~2Hz [14, 15]. Similar findings 
were reported for the regulation of  ankle impedance, but 
only for passive conditions [5]. Our experiments extend those 
results to active tasks in which feedback is necessary to 
compensate for the intrinsic properties of muscles.  

The observed performance was similar to that predicted 
by an optimal feedback controller. The degree of similarity 
was somewhat surprising given the simplicity of our model. 
Similar near-optimal behavior has been shown in other tasks, 
such as maintaining standing postures perturbations [12], and 
generating hand trajectories during reaching [16]. While 
these studies alone cannot be used to discern the neural 

mechanisms leading to this near-optimal behavior, they do 
suggest that the behavior can be replicated with a relatively 
simple controller. That finding has important implications for 
the design of artificial systems for restoring motor functions 
following injury. 

Through a combination of experiments and simulations, 
we have demonstrated that individuals have the ability to 
regulate joint torques possibly through torque feedback. 
These understanding of torque regulation together with those 
of position regulation can provide a scientific basis for 
understanding more general functional tasks involving both 
torque and position regulation, and for determining how 
pathologically altered feedback pathways influence the 
ability to regulate torque. 
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