
  

  

Abstract— Impedance control can be used to stabilize the 

limb against both instability and unpredictable perturbations. 

Limb posture influences motor noise, energy usage and limb 

impedance as well as their interaction. Here we examine 

whether subjects use limb posture as part of a mechanism to 

regulate limb stability. Subjects performed stabilization tasks 

while attached to a two dimensional robotic manipulandum 

which generated a virtual environment. Subjects were 

instructed that they could perform the stabilization task 

anywhere in the workspace, while the chosen postures were 

tracked as subjects repeated the task. In order to investigate 

the mechanisms behind the chosen limb postures, simulations 

of the neuro-mechanical system were performed. The results 

indicate that posture selection is performed to provide energy 

efficiency in the presence of force variability.  

I. INTRODUCTION 

The sensorimotor control system produces skillful 
movements despite the problems of noise, uncertainty, delays 
and nonlinearities in the system. One of the computational 
mechanisms that ameliorates these problems is impedance 
control [1]. For example, when subjects interact with an 
unstable environment, they learn to selectively control the 
stiffness of their arm to adapt to the environment [2-4]. This 
adaptation of endpoint stiffness is modulated to trade off 
mechanical stability with the destabilizing effects of signal-
dependent noise [5]. However the limb impedance can be 
modulated both by co-contraction and by changing the limb 
posture [6]. Any change in limb posture directly influences 
the passive endpoint stiffness of the arm [7], the inertial 
properties of the arm [6], the ability to manipulate stiffness 
[8], the ability to stabilize perturbations [9], and the effects of 
motor and sensory noise [10]. However, only recently have 
studies started to investigate the influence of arm posture on 
human motor control. Specifically it has been shown that 
when subjects are in unstable environments, they orient their 
arm so that the passive stiffness is large along the direction of 
instability [11]. Similarly it has been demonstrated that the 
variability of the endpoint of movements is strongly 
influenced by the limb geometry [12]. However, changes in 
limb geometry can also influence the effect of motor noise on 
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muscle tension, joint torques and endpoint force, further 
complicating a stable interaction with the environment. We 
behaviorally tested whether humans systematically use 
different postures to deal with different stability requirements 
and developed a computational neuro-mechanical model of 
the arm to interpret the results. 

II. EXPERIMENTAL METHODS 

A. Subjects 

Sixteen subjects (4 female) aged 24.1±5.0 years 
participated in the experiments. All subjects were right-
handed according to the Edinburgh handedness inventory 
with no reported neurological disorders. Subjects gave 
informed consent and the institutional ethics committee 
approved the experiments. 

B. Experimental Setup 

Subjects interacted with simulated rigid objects in the 
horizontal plane, approximately 10 cm below the subjects’ 
shoulder level. The forearm was supported against gravity 
with an air sled. The subject grasped the handle of a robotic 
manipulandum (vBOT, [13]) that was used to generate the 
environmental dynamics (Fig. 1A). Position and force data 
were sampled at 1KHz. Endpoint forces at the handle were 
measured using an ATI Nano 25 6-axis force-torque 
transducer (ATI Industrial Automation, NC, USA). Visual 
feedback was provided using an LCD monitor and mirror 
mounted above the vBOT. This virtual reality system covers 
the manipulandum, arm and hand of the subject preventing 
any visual information of their location. The subjects’ hand 
was attached to the handle of the vBOT using a thermoplastic 
cuff, which limited movement of the wrist and constrained 
the subjects’ movement to only elbow and shoulder motion 
(subjects’ trunks were fixed in the seat using a racing 
harness). The shoulder position and limb segment lengths 
were measured for each subject. 

C. Protocol 

Subjects performed an interaction task in which they were 
required to push a virtual disk attached to their hand (orange, 
Fig. 1B) against a frictionless circular object (blue, Fig. 1B) 
of varying size and hence stability. The required force was 6 
± 0.5 N in one of four directions (Fig. 1C). A successful trial 
involved the subject producing the desired force magnitude 
and direction for two seconds. Three different stability levels 
were examined: a fully stable object (the disk was attached 
by a stiff spring to the object), a moderately unstable object 
and a highly unstable object (Fig. 1B). The instability was 
determined by the size of the circular object (0.75 or 0.35 cm 
radii). Twenty trials of the same condition (stability level and 
force direction) were presented sequentially with subjects 
free to re-position their arm between trials (and hence the 
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object, which was placed next to the hand) so that they could 
choose where to perform the task within the workspace. The 
order of conditions was randomly chosen, and each new 
condition started with one of three initial limb postures (far 
left, far right, near middle). Each condition, i.e., stability 
level and force direction, was presented three times 
throughout the experiment (once for each possible starting 
position). In order to avoid the confounding effects of visual 
feedback location, the visual feedback (hand, object and force 
vector) on each trial was presented randomly at one of 20 
different locations (hence there was a translation between 
visual and actual hand location). The final five trials, out of 
20, in each condition were used as representative of where 
the subjects preferred to perform the task. 

c 
endpoint 
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stable object moderately unstable object highly unstable object 
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K=80N/cm object radii= 0.75 cm object radii = 0.35 cm 

Figure I. Experimental design. A) The setup of the robotic 
manipulandum. B) Three tasks of varying stability demands. The hand 
(orange circle) produced a force onto the fixed object (blue circle). The 
exerted force (red line) was required to be maintained within the 6 ± 0.5 N 
force target (black circle) for 2 seconds for a successful trial. All objects 
were visible to the subjects. C) Forces were produced in four directions. 

III. COMPUTATIONAL SIMULATIONS 

In order to examine the mechanisms that govern the 
choice of the particular postures chosen in our tasks, we 
developed a model of the neuro-muscular system of the arm. 

A. Model Details 

The arm was modeled as a two-link system exerting an 
endpoint force onto a rigid frictionless circular object similar 
to the experimental design. The arm model was driven by six 
muscles (Fig. 2). These muscles were comprised of two 
single joint elbow muscles, two single joint shoulder muscles 
and two biarticular muscles. Endpoint force (F) was 
calculated as: 

(1) 

where Dr is the 6 x 2 matrix of moment arms (equal sizes for 
all muscles), Fm is the matrix of muscle forces, and J is the 
limb Jacobian. The joint stiffuess (R) was calculated as: 

(2) 

where Cm is the stiffness constant (75 m- 1
), and Rbase is the 

passive joint stiffuess ([10.8 2.83; 2.51 8.67] Nm/rad) as 
obtained from [14]. The activation of each muscle was 

contaminated with signal dependent noise, using values that 
produced similar levels (3% coefficient of variability) of 
variability in endpoint force to those measured 
experimentally [15,16]. Together, this meant that both muscle 
stiffness and motor noise scaled linearly with the muscle 
activation [ 5]. 

endpoint 
force 

endpoint stiffness 

Figure 2. The six muscle, two joint model of the human arm. The endpoint 
stiffuess of the limb depends on the limb posture and the particular set of 
muscle activations that produce the required endpoint force. 

B. Model Properties 

The model was compared to experimental results. Similar 
to previous studies of passive endpoint limb stiffness [7], the 
model produced changes as a function of the limb posture, 
with the stiffness ellipse becoming more isotropic close to the 
shoulder (Fig. 3A). Similarly, when force was exerted in 
different directions in the horizontal plane, the endpoint 
stiffness modulated similar to previous experimental results 
[14] (Fig. 3B). When endpoint stiffness is modulated by 
changes in muscle activation, this also results in changes in 
the size and direction of the endpoint force variability (Fig. 
3C). Modeling these changes are critical to understanding the 
interaction between signal dependent noise and limb 
impedance [5]. 

C. Simulations 

Simulations were performed separately at each of all 
possible joint postures within the experimental workspace (5° 
tiling providing 4 77 limb postures). For each limb posture, 
and for each of the 4 force directions, the simulation was 
performed at a large number of different combinations of 
muscle activation patterns (>2000) that all produced the 
required endpoint force. Muscle activations were 
contaminated with signal-dependent noise, making some of 
the activation patterns unstable. In a forward simulation, 
these noisy forces were exerted on a two-link system with the 
corresponding joint stiffness matrix and external constraints 
set by the object curvature. The joint damping matrix was set 
equal to 5% of the stiffness matrix. This value is of similar 
magnitude to both that used in computational models of the 
arm [5,17] and those measured experimentally [8]. Only 
simulations in which the arm was able to maintain contact 
with the object for the entire simulation time (15 s) were 
considered successful. 

IV. RESULTS 

A. Experimental Results 

Throughout the trials subjects explored a large part of the 
workspace in order to find limb postures that allowed them to 
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perform the task and/or felt comfortable. However, by the 
end of the twenty trials, subjects generally converged to the 
same location for the same task regardless of the initial 
posture. For each force direction and stability level, subjects 
chose to perform the task in systematically different locations 
(Fig. 4). We hypothesized that the choice of limb geometry 
was determined by subjects choosing the minimum energetic 
solution that allowed postural stabilization (i.e., subject to the 
interaction between motor noise and muscular stiffuess). 
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Figure 3. Properties of the neuromechanical model. A) The passive 
endpoint stiffness of the model as a function of limb posture. B) The model 
produces endpoint stiffuess of the limb which modulates with endpoint 
force. C) Modulating the muscle co-activation produces changes in the 
variability of the endpoint force. Both plots show the muscle activation and 
endpoint force variability for the production of 6N in the positive x-axis. 
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Figure 4. The final five postures chosen by a sample subject interacting 
with the stable, moderately unstable, and highly unstable objects. Colors 
indicate force direction. Shaded areas represent the 95% confidence region. 

B. Simulation Results 

The minimum muscle activation pattern that was able to 
maintain stability while producing the required endpoint 
force was found for each force direction, stability condition 
and posture (Fig 5A). The final postures chosen by the 
subjects (Fig 5, white dots show last 5 trials for all 16 
subjects and all 3 repetitions) were in most cases close to the 
minimal muscle activation that could maintain stability, 
although there were exceptions for some subjects. For the 
most stable object, the chosen limb postures were well fit by 
the minimum muscle activation that could produce the 
desired force against the object, without any constraints on 
stability. Similarly, for the highly unstable object (Fig. 5B), 
the results were reasonably fit by the minimal muscle 
activation that could maintain stability against the highly 
unstable object. 
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Figure 5.  Simulated muscle activation patterns for successful stabilization 

shown with subjects’ positional preferences in the workspace. A) Minimum 

sum of muscle activation that produces the required force in the correct 

direction for each posture. Overlaid white dots represent the final posture of 

6 subjects in the stable object condition. B) The highly unstable object. 
Note the order of magnitude difference in activation between A and B. 

V. CONCLUSION 

These results of our experiments and simulations suggest 

that the subjects were choosing limb postures in which the 

muscle activation pattern could be manipulated so that 

endpoint stiffness ensured stability despite its concomitant 

force variability. However, the subjects’ postures do not 

perfectly fit the model predictions in all cases. It is unclear 

whether this is because the subjects were still exploring the 

space of possible solutions or whether there are other costs 

that need to be considered within the model predictions. 

Specifically, the model ignores the contribution of task-

dependent changes in feedback responses, which can 

provide additional stability [18-19].  However, despite these 

issues, we believe that the results suggest that posture 

selection is strongly related to maximizing energy efficiency 

in the presence of force variability and stability 

requirements.  
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