
  

 

 

 

 

 

 

 

 

 
 

Figure 1. At 2 seconds into the trial a fixation cross appears and an 

audio cue is sounded. At 3 seconds into the trial a randomly selected left 

or right arrow is displayed and at this point the subject imagines moving 

the hand on the side of their body that corresponds with the direction of 

the arrow. At 9 seconds the trial ends and the next trial begins [4]. 

� 

Abstract ² This paper presents a novel method, based on 

multi-channel Empirical Mode Decomposition (EMD), of 

classifying the electroencephalogram (EEG) recordings of 

imagined movement by a subject within a brain-computer 

interfacing (BCI) framework. EMD is a technique that divides 

any non-linear or non-stationary signal into groups of 

frequency harmonics, called Intrinsic Mode Functions (IMFs). 

As frequency is a key component of both IMFs and the µ 

rhythm (8-13 Hz brain activity generated during motor 

imagery), IMFs are then grouped by frequency. EMD is applied 

to the recordings from two electrodes for each trial and the 

resulting IMFs are grouped according to peak-frequency band 

via Hierarchical Clustering Analysis (HCA). The cluster 

containing the frequency band of the µ rhythm (8-13 Hz) is then 

selected and the sum-total of the IMFs from each electrode are 

summed together. A simple linear classifier is then sufficient to 

classify the motor-imagery with 89% sensitivity from a separate 

test set. 

I. INTRODUCTION 

A Brain-Computer Interface (BCI) is a device that uses 
the brain-activity of a person as an input to select desired 
outputs on a computer [1]. One method of obtaining a 
SHUVRQ¶V�EUDLQ�DFWLYLW\�DV�D�GLJLWDO� LQSXW� LV�E\�XVLQJ�SDVVLYH�
surface electrodes and an electroencephalogram (EEG) 
amplifier. However as the electrodes are placed on the scalp 
the data suffers from a very low signal-to-noise ratio and 
needs to be processed before it can be correctly classified. 
Empirical Mode Decomposition (EMD) is a data-driven 
method that can be applied to any non-linear or non-
stationary signal, one such application is EEG data.  EMD 
divides the signal into groups of frequency harmonics called 
Intrinsic Mode Functions (IMFs) and residual noise using an 
iterative sifting process [2]. EMD is particularly effective 
with rhythmic signals due to the fact that the amplitude of 
IMFs must be symmetrical with respect to zero, making it 
ideal for application to motor imagery in BCI. 

Motor imagery is a common form of BCI; it relies on the 
paradigm of imagined movement suppressing a rhythmic 
signal known as the µ rhythm in the contralateral region of a 
SHUVRQ¶V� PRWRU� FRUWH[�� NQRZQ� DV� (YHQW� 5HODWHG�
Desynchronization (ERD) [3]. The µ rhythm is limited to a 
frequency band of 8-13 Hz, with the signal predominantly 
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occurring around 10 Hz. Simply imagining moving your left 
hand will suppress this signal on the right side of your motor-
FRUWH[��WR�WKH�UHJLRQ�ZKHUH�µKDQG¶�LV�PDSSHG��DQG�YLFH�YHUVD�  
7KH� VLJQDO¶V� FRQVLVWHQF\� DQG� NQRZQ� SDUDPHWHUV� PDNH� LW�
possible to isolate from the rest of the brain activity recorded 
in the EEG data. 

As frequency is a key component of both motor imagery 
detection and IMFs it is logical to apply EMD to motor 
imagery data in order to extract rhythmic features in the form 
of IMFs that correspond to the frequencies of the µ rhythm. 
The remaining IMFs would be discarded and the IMFs 
relating to the µ rhythm recombined through summing to 
produce a filtered signal. In effect the EMD method creating 
a filter specific to the data for each individual. 

The following section will outline the data-set used and 
the methodology as applied to this data. 

II. METHODOLOGY 

A. Data Set 

The data used in this study was pre-recorded motor 
imagery data provided by the Graz BCI group for use in BCI 
Competition II, Data Set III [4]. A 25 year old female subject 
sat in a chair whilst an EEG recorded brain activity from 
electrode positions C3, Cz and C4. 

As shown in Fig. 1, each trial of the motor imagery 
experiment consisted of a two second pause, followed by an 
audio cue to signify the start of the test and a fixation cross 
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(a)                                                                                                                                (b)  

   

Figure 3. (a) The IMFs and residual noise produced from applying EMD to the data shown in Fig 2a. Summing these plots would reform the plot in 
Fig 2a. (b) The IMFs and residual noise produced from applying EMD to the data shown in Fig 2b. Residual noise from both channels will be 
discarded and the next step is to cluster the IMFs of both channels together in preparation for isolating the IMFs that span the µ rhythm frequency 
band. 

 (a)                                                                                                             (b)  

    

Figure 2. (a) The raw EEG data from a single trial from (a) channel C3 and (b) channel C4, at the onset of motor imagery. 

displayed for one second. At three seconds into the trial a left 
or right arrow was displayed for six seconds to indicate 
which hand to imagine moving. A feedback bar was also 
displayed to the user during this time to help indicate the 
success of the imagined movements. The trial lasted nine 
seconds in total. 280 trials were recorded on the same day 
with several minutes rest every 70 trials. The trials were then 
randomly sorted into training and test groups, with 70 trials 
of imagining left and 70 trials of imagining right forming the 
training data group, and the remaining 140 trials forming the 
test data group. The EEG was sampled at 128 Hz and band-
pass filtered to between 0.5 and 30 Hz.  

B. Feature Extraction 

EMD is a process for separating a waveform into a group 
of harmonics and residual noise. It is achieved by applying 

the following steps to the data, x(t): 

i.) Identify the maxima and minima of the signal. 

ii.) Interpolate between the maxima and minima to create 
upper and lower envelopes. 

iii.) Calculate the mean between the two envelopes, m(t). 

iv.) Subtract the mean from the signal to get an IMF 
candidate, xn+1(t) = xn(t) ± m(t). 

v.) Check if xn+1(t) is an IMF by calculating if it is 
symmetrical with respect to zero 

a.) If xn+1(t) is an IMF then store the IMF and 
return to step i.) with the signal x(t) = xn(t) ± xn+1(t). 

b.) Or if xn+1(t) is not an IMF then discard and 

5611



  

return to step i.) with the signal x(t) = xn(t) ± xn+1(t). 

vi.) When there are less than two extrema left in the 
signal the remaining data is classified as the residual. 

The above process was applied to the data from 
electrodes C3 and C4 (shown in Fig. 2) of each individual 
trial at the onset of motor imagery until one second before 
the end of the trial (3-8 s). The residual noise was 
immediately discarded and the IMFs (shown in Fig. 3) of 
both electrodes grouped together so that the data from more 
than one channel was included. Fast-Fourier Transforms 
(FFTs) were calculated for each IMF. The peak frequency of 
each IMF and its corresponding amplitude were identified. 
These peak frequencies were grouped into clusters using 
Hierarchical Clustering Analysis (HCA), ensuring that IMFs 
spanning similar frequency bands were grouped together 
(shown in Fig. 4). HCA calculates the Euclidean distance 
between every possible pair of data points and constructs a 
binary hierarchical cluster tree with the pair of elements with 
the smallest distance between them forming the next link [5]. 
The tree is then partitioned into separate clusters when there 
is a sudden increase in the distance between links. This 
algorithm ensures the grouping by peak frequency values is 
done objectively. 

The cluster that spanned 9-11 Hz was identified as the µ 
rhythm cluster (shown in Fig. 4). Should excessive artifacts 
or noise distort the signal to the extent that no clusters 
spanning 9-11 Hz were detected, the frequency band was 
expanded by 1 Hz in both directions until a cluster fell within 
it. This was so that trials which had had their µ rhythm 
obscured by noise still could contribute some data that could 
be used to classify them, rather than be discarded 
completely. The electrode source of each IMF in the µ 
rhythm cluster was identified and the amplitudes of the peak 
frequencies of IMFs from the same electrode summed 
together, producing a single value for each electrode (shown 
in Fig. 4). This value represents the power in the µ band for 
an individual electrode, giving us amplitude, frequency and 
spatial data. After that a simple cRPSDULVRQ� RI� WKH� YDOXHV¶�
magnitudes is enough to determine which hand the subject 

was imagining moving, with greater power in C3 meaning 
the subject was imagining moving their left hand and greater 
power in C4 meaning the subject was imagining moving their 
right hand. This difference in magnitudes corresponds to the 
theory of µ rhythm suppression on the contralateral side of 
the motor cortex during a motor imagery task. 

III. RESULTS AND DISCUSSION 

The classifier described above resulted in 88.57% 
specificity and 88.57% sensitivity, subsequently identifying 
88.57% of the 140 test trials correctly. Each trial required 5 
seconds worth of data and 0.30 seconds of processing time, 
giving an information throughput of 11.32 bits/minute. Fig. 5 
shows the calculated difference between the power in the 
electrodes. It shows a clear left-right distribution, 
demonstrating visually in this case the redundancy of a 
trained classifier such as Linear Discriminant Analysis 
(LDA) or Support Vector Machines (SVM) [6]. For the sake 
of completeness, the processed data from the training and 
test sets was processed through an LDA classifier and it 
returned the same accuracy as the simplified threshold 
classifier, thus showing that a non-complex classifier is 
sufficient due to efficient feature extraction of the data. 
Although the method is only applied to one test subject it 
does provide a proof-of-concept that EMD can be used on 
EEG data this way. The minimum requirement of 5 seconds 
worth of data is a minor disadvantage compared to 
alternative methods that can start giving online feedback as 
soon as the trial starts. 

Table 1 lists a selection of methods applied to this data 
set sorted by accuracy, with the method described in this 
paper coming third,

 
demonstrating comparable performance 

to existing methods. Requiring no training trials at all in 
order to construct a classifier is a distinct advantage in ease 
of use and reducing processing time. The frequency 
boundaries of the µ rhythm do need to be defined before 
executing the process and they may vary slightly between 
subjects. This could be avoided by taking an average of all 
WKH�WULDOV¶�((*�GDWD�DQG�FDOFXODWLQJ�DQ�))7��7KHUH�ZRXOG�EH�

 
Figure 4.  The FFTs calculated from the IMFs in Fig 3a and 3b. The peak frequencies of the IMFs have been clustered to determine which FFTs, 

and by extension which IMFs, are most similar to each other. Then the cluster that consists of peak frequencies within the µ rhythm is identified, in 

this case Cluster 4. The amplitudes of the peak frequencies in the IMFs from each electrode are summed and compared, e.g. 0.0157 (0.0056 + 0.0101) 

in channel C3 vs 0.0041 in channel C4. The µ rhythm is less and has therefore been suppressed more in channel C4, therefore the hand contralateral 

to it (left) was imagined being moved in this trial. 
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a distinct peak over the frequency band the µ rhythm was 
occurring at. This would provide a way to objectively select 
the frequency band and cluster of interest. However it would 
reintroduce the need for training data. As EMD is data-
driven and adaptive it has further possible applications to 
BCI outside of motor imagery.  

IV. CONCLUSION 

EMD has proven to be a robust method in creating filters 
that mold themselves to the data it is applied to, producing 
features so distinct that a linear classifier with no supervised 
training can be applied to them. HCA on the other hand may 
be superfluous to the process. An alternative method for 
selecting the relevant FFTs (and the IMFs that they were 
calculated from) could be to simply keep those that had peak  

TABLE 1. COMPARISON OF MINIMUM ERROR RATES SUBMITTED BY 

DIFFERENT GROUPS FOR THE SAME DATA* 

 

Authors Method Error Rate (%) 

Xu et al Wavelet Transform 7.90 

Schafer et al Wavelet Transform 10.57 

Davies et al EMD 11.53 

Xiaorong et al ERD 13.57 

Xiaorong et al ERD 15.00 

Narayana et al AR Modeling 15.71 

Saffari et al AAR Modeling 17.14 

Sadashivaiah et al AR Modeling 17.14 

Zander et al AAR Modeling 17.14 

Rissacher et al Spectral Entropy 23.57 

Rio Vera et al PCA 32.14 

Mbwana et al PPDA 49.29 

  *Results, excluding Xu et al [7] and Davies et al, aggregated by Jia et al [8]. Error rate is 

calculated by applying the grouS¶V�VHOHFWHG�SURFHVVLQJ�PHWKRG�WR�D�WUDLQLQJ�VHW�DQG�WHVW�VHW��$�

PRYLQJ�ZLQGRZ�RI�RQH�VDPSOH¶V�OHQJWK�LV�VZHSW�DFURVV�WKH�SURFHVVHG�GDWD��)RU�HDFK�ZLQGRZ�

an LDA classifier is trained using the training data within the window and applied to the test 

data that falls within the moving window. The window that produces the lowest error rate is 

selected as the optimum sample point. 

frequencies within the µ rhythm frequency band and discard 
the rest. Possible future work on this method would include 
applying it to data that was recorded with significantly more 
electrodes in order to evaluate the impact of multi-channel 
(0'�RQ�WKH�FODVVLILHU¶V�DFFXUDF\��REMHFWLYHO\�LGHQWLI\LQJ�WKH�
ERXQGDULHV� RI� DQ� LQGLYLGXDO� VXEMHFW¶V� �� UK\WKP� WKURXJK� WKH�
use of averaged training data and investigating the possible 
usefulness of the 20 Hz rhythm that has been observed 
during some motor imagery activities [9]. 
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Figure 5.  Difference in calculated power between channels C3 and C4. After the power in the µ rhythm for each electrode has been calculated the 

two values are compared, with the channel with less power being the one that is contralateral to the imagined movement. Were you to subtract the 

value in C4 from the value in C3, any trials where the µ rhythm power was less in C3 would give a negative result and trials where the µ rhythm 

power was less in C4 would give a positive result. Therefore DQ\�VXEWUDFWLRQ�WKDW�JDYH�D�QHJDWLYH�UHVXOW�ZRXOG�EH�LGHQWLILHG�DV�³7KLQN�5LJKW´�E\�WKH�

classifier and DQ\�VXEWUDFWLRQ�WKDW�JDYH�D�SRVLWLYH�UHVXOW�ZRXOG�EH�LGHQWLILHG�DV�³7KLQN�/HIW´. The correct direction the user was thinking of is denoted 

by the different colored markers. The spread of the markers has a strong left-right divide over the threshold point (zero). 
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