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Abstract— Brain-Machine Interface (BMI) systems allow
users to control external mechanical systems using their
thoughts. Commonly used in literature are invasive techniques
to acquire brain signals and decode user’s attempted motions
to drive these systems (e.g. a robotic manipulator). In this work
we use a lower-body exoskeleton and measure the users brain
activity using non-invasive electroencephalography (EEG). The
main focus of this study is to decode a paraplegic subject’s
motion intentions and provide him with the ability of walking
with a lower-body exoskeleton accordingly. We present our
novel method of decoding with high offline evaluation accuracies
(around 98%), our closed loop implementation structure with
considerably short on-site training time (around 38 sec), and
preliminary results from the real-time closed loop implementa-
tion (NeuroRex) with a paraplegic test subject.

I. INTRODUCTION

Having the potential of increasing the quality of life
for paraplegic and tetraplegic population, BMI systems to
control lower-body and upper-body exoskeletons became a
focus of research for the past decade. Researchers recently
reported the control of external physical devices (robotic
manipulators, prostheses) and computer cursors using in-
vasive methods [1], [2], [3]. Some major limitations of
invasive methods are the risks associated with surgery and
degradation in signal quality over time. Non-invasive meth-
ods typically acquire brain signals using scalp electroen-
cephalography (EEG). Although having a small signal-to
noise ratio compared to the intracortical methods, recent
results show the possibility of using non-invasive (risk-free)
decoding of delta-band brain activity using EEG to predict
the human limb movements to reliably drive a BMI [4], [5],
[6]. We have also reported the feasibility of a single session
training followed by a successful on-line decoding [7] of
EEG signals.

Parametric methods such as Kalman Filter, Wiener Filter
[4], [8] and soft computing methodologies [9] are used to
accomplish high decoding accuracies of limb motion param-
eters, such as the joint angles and joint velocities. In this
paper, we direct our attention to a shared control architecture,
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that benefits from the control of definitive parameters of
walking by the exoskeleton system. There are a number
of systems in the literature designed to assist or provide
walking for stroke patients, spinal cord injured and elderly
population such as the Human Assistive Limb Exoskeleton
(HAL, Cyberdyne Inc.) and the ReWalk (Bionics Research
Inc.). In our studies we are using the Robotic Exoskeleton
(REX, REX Bionics Ltd.). One advantage of this system
is that it is self balancing and it has a variety of pre-
programmed motions, the most important for our studies
being the walking, turning, sitting, standing motions. Having
the advantage of such a system performing an inherent
closed-loop control once a motion command is received, we
examined the possibility of decoding the intended user mo-
tion rather than the motion parameters (fig. 1). This requires
a classifier approach of decoding compared to the mapping
of EEG signals to continuous set of joint parameters. We
present our novel decoding model architecture and the offline
decoding results for repeated walking-turning right-turning
left motions and sit-rest-stand motions. We also present our
initial findings on an EEG-based BMI system to control
the REX (NeuroRex) exoskeleton in a real-time closed-loop
setting, resulting in independent walking for the paraplegic
user.

II. MATERIALS AND METHODS

A. Experimental Protocol

The Institutional Review Board of the University of
Houston approved the experimental protocols. After giving
informed consent, subject conducted two tasks. Although the
REX system can be controlled via a joystick by the user, in
Task 1 subject is asked to follow and complete a path marked
on the ground while exoskeleton is controlled by an operator
remotely. The rationale behind this task is to have the user
focus only on the given walking-turning right-turning left
task while minimizing the effect of the subject’s hand/finger
motions on the data set. The path is a discrete number
8 figure where each linear sections’ connection angles are
compatible with the robot’s right/left turn angles. Task 2 was
conducted with the remote control interface for repeated sit-
rest-stand-rest cycles for 5 minutes.

B. Data Acquisition and Pre-Processing

A 64 Channel electrode cap (actiCAP, Brain Products
GmbH) was placed on the head of the subject according
to the international 10-20 system having FCz as reference
and AFz as ground. A wireless interface (MOVE system,
Brain Products GmbH) was used to transmit data (sampled
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Fig. 1. A paraplegic volunteer controlling NeuroRex with his thoughts via
our proposed EEG BMI interface

at 100Hz) to the host PC. Data then filtered in the (0.1-
2Hz) range using a 2nd order Butterworth filter. Filtered data
were then standardized (z-score). Separate channels were
then used to create a feature matrix (to extract the EEG
delta-band amplitude modulation information) using a 200ms
window with 1 shift, each row having the time shifted from
[ch1(t−n), ..., ch1(t), ch2(t−n), ..., ch2(t)...chm(t)], where
n is the window size in samples and m = 64 is the total
number of channels.

C. Classification Method for Decoding

Having such a feature matrix structure often yields a
high dimensional set (for all 64 channels used, the set
is 1280 dimensional). Commonly used dimensionality re-
duction techniques such as Principal Component Analysis
(PCA) or Fisher’s Linear Discriminant Analysis (LDA) work
under the assumption that the distributions are Gaussian,
whereas real-life observations are often non-gaussian and in
some cases are multimodal [10]. As proposed in [11], we
use a classification paradigm that was designed to preserve
and use the rich statistical structure of the data. We use a
Local Fisher’s Discriminant Analysis (LFDA) to reduce the
dimensionality of the data while preserving the multimodal
structure, and employ a Gaussian Mixture Model (GMM)
classifier to map the states of the exoskeleton to the feature
matrix (amplitude modulation of the subject’s delta-band
brain activity).

1) LFDA: For a data set with samples X = {xi}ni=1 in Rd
(d is the dimension of the feature space, n is the total number
of samples), and class labels (in our case: the motion states)
yi ∈ {1, 2, ..., c} (c is the number of classes), the affinity
(heat kernel) between xi and xj is defined as

Ai,j = exp(−‖ xi − xj ‖
2

γiγj
) (1)

which measures the distance among data samples. Here
γi =‖ xi−x(knn)

i ‖ denotes the local scaling of data samples
in the neighborhood of xi, and x

(knn)
i is the knn nearest

neighbor of xi. In LFDA, the local between class and within

class scatter matrices (Slb and Slw) are defined as

Slb =
1

2

n∑
i,j=1

W lb
i,j(xi − xj)(xi − xj)T (2)

Slw =
1

2

n∑
i,j=1

W lw
i,j (xi − xj)(xi − xj)T . (3)

W lb and W lw are,

W lb
i,j =

{
Ai,j(1/n− 1/nl), if yi = yj = l

1/n, if yi 6= yj

W lw
i,j =

{
Ai,j/nl, if yi = yj = l

0, if yi 6= yj

where nl is the number of training samples for the lth
class. Thus the transformation matrix (TLFDA) to reduce
the dimensionality of the feature space is defines as

TLFDA = arg max
TLFDA

tr [Ψ−1
lw Ψlb] (4)

where Ψlw = TTLFDAS
lwTLFDA, Ψlb = TTLFDAS

lbTLFDA
and SlbTLFDA = ΛSlwTLFDA for diagonal eigenvalue
matrix Λ. Defined by the offline analysis, this transformation
matrix was used to reduce the dimensionality of the feature
matrix formed in real-time.

2) GMM: A gaussian mixture model is a combination of
two or more normal gaussian distributions [12]. A typical
GMM probability density function is defined as

p(x) =

K∑
k=1

αkN(x, µk,Σk) (5)

where N(x, µk,Σk) = Γ exp(− 1
2 (x − µk)TΣ−1

k (x − µk))
for Γ = 1

(2π)d/2|Σk|1/2
. The mixing weight αk, mean µk

and covariance matrix Σk are estimated by the expectation-
maximization algorithm [13]. As for the transformation ma-
trix for the dimensionality reduction, these parameters were
identified in the offline analysis and used to estimate, in real-
time, the probabilities of a given feature vector belonging to
one of the classes. A more detailed discussion of the LFDA-
GMM method can be found in [11].

III. RESULTS

We report the offline analysis results for training our
GMM distribution for two different cases (tasks 1 and 2),
where the subject was asked to attempt (in his mind) the
walk, turn-right, turn-left motions and sit-down, rest, stand-
up motions. Online implementation results reported in this
section discusses the preliminary results of our closed loop
control implementation for walking or stopping with the
exoskeleton.

A. Open-loop analysis

Our EEG decoding method to identify the user intent
provided a good performance for a range of reduced dimen-
sionality and k-nearest-neighbor (knn) parameters.

After the pre-processing step, we grouped the feature
matrix data of different classes (3 classes for the tasks
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Fig. 2. Accuracy surface for task 1 gridded for 451 reduced dimension
and 451 knn values

reported). We then randomly selected 1500 samples for
training, and from the remaining data, random 1500 samples
for testing, from each class. This corresponds to 9.7% and
16.2% of the total data length for tasks 1 and 2 respectively.
Figure 2 shows the validation accuracy surface for varying
dimension and knn values (1 to 451 for both). The accuracy
for this case is sensitive to the reduced dimension, but less
sensitive to the knn value. The mean accuracy change from
reduced dimension 51 to 81 for all knn values is an increase
of 12.93%, whereas a knn change from 1 to 81 (where the
maximum accuracy of 99.07% occurs) for all dimensions
yields a mean accuracy increase of 1.39%. Using fixed

Fig. 3. Evaluation of the task 1 model using the entire data set

reduced dimension and knn parameters which yields high
accuracies, the whole data set were evaluated using the
corresponding GMM distribution. This validation step was
designed to be a pseudo real-time implementation. Namely,
the specified windows size of data were read from the pre-
processed data and the probabilities of the feature vector
belonging to each class were calculated, identifying the class
label as the one with maximum probability. Figure 3 shows
this test of evaluating the entire data set using the LFDA-
GMM method. The overall accuracy associated with this
case is 98.17%. These analyses were repeated for a second
case study using the data set from task 2. Similarly, the
accuracy surface over iterated knn and reduced dimension
values are shown in figure 4. The associated pseudo real-
time estimation is reported in figure 5. The overall accuracy
associated with this test is 99.68%.

B. Closed-loop implementation
Our closed-loop implementation sessions consists of two

steps. One for data acquisition, dimensionality reduction

Fig. 4. Accuracy surface for task 2 gridded for 451 reduced dimension
and 451 knn values

Fig. 5. Evaluation of the task 2 model using the entire data set

and GMM model training, and one for closing the loop
in real-time and simultaneously recording the related EEG
activity for future analysis. Having identified average values
that yields low dimensions (around 80) and high accuracies
(around 93%), our model training and offline validation to
confirm the accuracy takes on average 45 seconds.

We developed a multi-threaded C++ code for the closed-
loop implementation of our method, having a thread for the
real-time EEG data acquisition, and another thread for the
data preprocessing and GMM evaluation. The data acquisi-
tion thread continuously receives the EEG data and saves
it in a data file. After receiving a specified window size
of samples, the data matrix is passed to the second thread.
The second thread is responsible for pre-processing the data
by filtering it using a 2nd order Butterworth filter between
[0.1 2 Hz] using the overlap-add technique, forming the
feature vector, standardizing it and performing dimension-
ality reduction using the identified transformation matrix
(eq. 4). This thread is also responsible for calculating the
probabilities of the feature vector belonging to each class
and identifying the class label as the one with maximum
probability. It also converts the class label to the associated
motion of the exoskeleton (stop or walk forward) and trans-
mits it via the RS232 protocol.

As an initial study, we directed our focus on a relatively
simpler task of walking or stopping with the exoskeleton. In
a single session we observed an increased voluntary control
of the exoskeleton by the subject after several trials with the
same model. After performing four exploratory trials with
the exoskeleton, the subject reported that he was able to
stop the exoskeleton and walk again with it repetitively at
least three times in a three minutes long trial. In our latest
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experiments we have asked the subject to stop the robot and
stay standing for as long as he can, as we recorded our
model’s output of walk or stop continuously. We conducted
a total of 8 trials. Each trial lasted until a total of 5 stops
were achieved. We then calculated the percentage of the stop
signals transmitted to the exoskeleton from the total length
of the recorded commands. For the first 4 trials we have
recorded and increased the percentage of stops from 97.11%
to 99.32%. Following a break of 45 minutes after the 4th
trial, we recorded a monotonic decrease of 1.15%, followed
by an increase of 1.52%, bringing the accuracy to 99.69% for
the last trial. These results are indeed very promising, but yet
to be conclusive. The reason for that is an inherent time delay
of the exoskeleton. As described before, the exoskeleton
was designed to be stable — it thus has to complete a
whole cycle of gait before stopping, resulting in a slow time
response compared to our model’s output. We have also
timed the exoskeleton’s full stops manually and calculated
the percentage of stops from the overall experiment duration.
We have seen a monotonic increase of accuracy from 21%
to 70% over the first period of trials, and a final accuracy of
90% for the last trial. Our next step is to account for this time
delay thus increasing the exoskeleton’s response to the timed
commands we record from our model’s output. It should be
noted that, at the time of this writing, we have only run a total
of four sessions with the subject and the increased number
of correct responses motivates us towards an implementation
including several tasks (walking, stopping, turning right and
left, sitting and standing).

IV. DISCUSSION

Having the locality preserving dimensionality reduction
combined with a multimodal GMM classification indeed
performed very well for a range of control parameters. We
also ran a series of offline cross validation tests to check
the performance of our decoder method. We tested a single
model in an iterative setting for 1500 test samples randomly
selected for each of the 20 iterations. The mean accuracy
observed from this test was 97.74 ± 1.2% for task 1 and
99.31 ± 0.54% for task 2. We have also tested our model
generated for task 1 with the data from task 2 (each having
3 classes) as an additional control. We observed a mean
accuracy of 18.78% for this case, and a mean accuracy of
8.9% for the case when we test the task 2 model with the
task 1 data. This suggests that our models are extracting EEG
features unique to the tasks for which they were originally
trained for. We are now increasing the number of classes
by training our models with a larger number of tasks (i.e.,
having multiple types of motions).

Using the proposed decoding methodology, we clearly see
an increase of correct command executions over trials. In our
closed-loop setting, we also have more successful trials when
using an on-site trained model compared to a model that is
trained in a previous session. That brings the importance of
a more adaptive learning scheme (identifying and updating
the parameters as the experiment is performed). It should
also be noted that the overall control scheme encapsulates

the subject’s adaptation to a given task, thus a longitudinal
study investigating the control performance of a fixed model
over sessions is also important. One of our future directions
is to embed the identification of the reduced dimension and
knn parameters, as well as building the GMM distribution
model in real-time. Another important step is to account for
the inherent time delays associated with the exoskeleton to
increase the responsiveness to the commanded motions. As
discussed previously, the exoskeleton performs a series of
motion-cycles before executing a new command. In several
trials we observed the transmission of a new command
before the execution of the previously received command was
completed. For example, before a stop command was fully
executed, a new walk command would be received from the
BMI algorithm, which explains the difference between the
observed and recorded command percentages over the entire
data set. Nevertheless, we see an increase in accuracy in both
cases. We are currently continuing longitudinal testing with
a small cohort of SCI patients, as well as able bodied control
subjects.
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