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Abstract— In the auditory cortex, onset activities have been 

extensively investigated as a cortical representation of sound 

information such as sound frequency. Yet, less attention has 

been paid to date to steady-state activities following the onset 

activities. In this study, we used machine learning to investigate 

whether steady-state activities in the presence of continuous 

sounds represent the sound frequency. Sparse Logistic 

Regression (SLR) decoded the sound frequency from band 

specific power or phase locking value (PLV) of local field 

potentials (LFP) from the fourth layer of the auditory cortex of 

anesthetized rats. Consequently, we found that SLR was able to 

decode the sound frequency from steady-state neural activities 

as well as onset activities. This result demonstrates that the 

steady-state activities contain information about the sound such 

as sound frequency. 

I. INTRODUCTION 

Neural systems are usually sensitive to transient rather 
than steady-state stimulus features. Onset activities have 
thus been characterized extensively to date.  For example, in 
the auditory cortex, most existing studies used short test tones 
with durations of a few 10 or 100 ms to characterize neural 
activation at stimulus onsets as a function of test frequency 
and intensity [1, 2]. On the other hand, steady-state neural 
activities following the onset responses have received less 
attention because the neural activities easily adapt to 
continuous sounds lasting on the order of seconds. However, 
some specific neural features such as cross-correlation of the 
firing rates between two neurons may carry significant 
information about test tones in steady-state neural activities 
[3]. We thus attempt to decode steady-state activities in the 
auditory cortex by paying specific attention to, interaction 
between neural populations. 

Microelectrode arrays that are able to densely map neural 
activities and investigate interactions between neurons are 
now available in routine experiments. However, thus-obtained 
neural data become very high dimension, making it difficult 
for us to find reliable neural activity patterns representing 
sound information. Thus, automatic identification of 
informative patterns may bring significant benefit to decode 
high-dimension neural patterns. 
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Previous studies demonstrated that machine learning such 
as support vector machine (SVM) and k-nearest neighbor 
method (KNN) successfully decoded sound stimulus 
frequency from firing rates of onset activity in the rat auditory 
cortex [4, 5].  However, it is known when the sample size is 
small or data dimension is high, these methods will be 
over-trained and insufficient for decoding. In this study, to 
handle more high-dimension data, we utilize the sparse 
logistic regression (SLR [6]) to decode steady-state neural 
activity. In SLR, logistic regression is extended to Bayesian 
framework using automatic relevance determination (ARD). 
ARD is an effective algorithm to compress a dimension of 
input characteristics vector, by reducing weights of 
non-reliable component of the input vector to zero [7]. 
Therefore, SLR is likely useful when input vectors sparsely 
represent information like neural activity patterns.  

The objective of this study is to investigate whether the 
steady-state activity in the auditory cortex represent the sound 
information. In particular, we attempt to decode the frequency 
of the sound stimuli from the steady-state activity in rat 
auditory cortex. For neural data to be decoded, a 
microelectrode array with a grid of 10 × 10 within 4 × 4-mm 
recording area simultaneously recorded local field potentials 
(LFP) from the 4th layer of the auditory cortex of anesthetized 
rats. The band-specific power and the phase synchrony were 
extracted as neural features of the steady-state activity for 
decoding. 

II. MATERIALS AND METHODS 

This study was carried out in strict accordance with 

“Guiding Principles for the Care and Use of Animals in the 

Field of Physiological Science” by the Japanese 

Physiological Society. The experimental protocol was 

approved by the Committee on the Ethics of Animal 

Experiments at Research Center for Advanced Science and 

Technology, the University of Tokyo (Permit Number: 

RAC07110). All surgery was performed under isoflurane 

anesthesia, and every effort was made to minimize suffering. 

A. Electrophysiological Experiment 

Seven Wistar rats, at postnatal week 8 – 10, with a body 
weight of 230 – 300 g, were used. Rats were anesthetized with 
isoflurane (3 % at induction and 1-2% for maintenance) and 
were held in place with a custom-made head-holding device. 
Atropine sulfate (0.1 mg/kg) was administrated at the 
beginning and at the end of the surgery to reduce the viscosity 
of bronchial secretions. A heating blanket was used to 
maintain body temperature at around 37 degrees C. Skin 
incision at the beginning of surgery was made under local 
anesthesia of xylocaine (0.3 - 0.5 ml). A needle electrode was 
subcutaneously inserted at a right forepaw and used as a 
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Figure 1. Tone-evoked local field potential (LFP) 
(a) Onset LFP. The absolute value of the minimum peak before 50 ms from the sound onset was defined as the amplitude of evoked potential. The duration of 
tone was 15 ms. (b) Steady-state LFP. (i) Representative raw traces of LFP in response to a continuous sound (16 kHz, 60 dB SPL, 30 sec). (ii) Instantaneous 

amplitude of LFP after filtering with a passband of 11 – 16 Hz, where spindles were included. Time periods, during which the instantaneous amplitude 
exceeds a threshold in 25 and more recording sites, were classified as spindle waves (black line); others were classified as non -spindle waves (gray line) and 
the following analysis only included the non-spindle waves. (iii) Representative traces of LFP filtered by theta band (4 – 8 Hz). Black and gray lines represent 
the spindle and non-spindle waves. A length of time period was 1000 ms, and they had 500 ms overlap. A length of time window used in the analyses was 

chosen from 6 durations. These filtered LFP were used to quantify the band power and phase locking value (PLV) of steady-state neural activities. 

ground. A small craniotomy was made near the bregma 
landmark to embed a 0.5-mm-thick integrated circuit socket as 
a reference electrode, with an electrical contact to the dura 
mater. The right temporal muscle, cranium, and dura 
overlying the auditory cortex were surgically removed, and 
the exposed cortical surface was perfused with saline in order 
to prevent desiccation. Cisternal cerebrospinal fluid drainage 
was performed to minimize cerebral edema. The right 
eardrum, i.e., ipsilaternal to the exposed cortex, was ruptured 
and waxed to ensure unilateral sound inputs from the ear 
contralateral to the exposed cortex. Respiratory rate, heart rate 
and hind-paw withdrawal reflexes were monitored throughout 
the experiment in order to maintain an adequate anesthetic 
level as stably as possible. 

A microelectrode array (Blackrock Microsystems, 
ICS-96) with a grid of 10 × 10 recording sites within an area 4 
× 4-mm simultaneously recorded LFPs from the 4th layer of 
the auditory cortex, i.e., 600 μm in depth. LFPs were obtained 
with an amplification gain of 1000, digital filter bandpass of 
0.3 – 500 Hz, and sampling frequency of 1 kHz (Cyberkinetics 
Inc.; Cerebus Data Acquisition System). A speaker 
(10TH800, Matsushita Electric Industrial Co. Ltd., Japan) was 
positioned 10 cm from the left ear, i.e., contralateral to the 
exposed cortex. Test stimuli were calibrated at the pinna with 
a 1/4-inch microphone (Brüel&Kjær, 4939) and spectrum 
analyzer (Ono Sokki Co., Ltd., CF-5210). The stimulus level 
is presented in dB SPL (sound pressure level in decibels with 
respect to 20 μPa). 

First, we recorded onset activities responding to pure tone 

bursts (5 ms rise/plateau/fall) with frequencies from 1 to 50 
kHz and intensities from 30 to 70 dB SPL, repeated 20 times 
for each combination of frequency and intensity. These test 
frequencies cover the entire audibility range of rat. Then, we 
recorded steady-state activities responding to continuous pure 
tone (30 second duration, 60 dB SPL) with frequencies of 16 
and 40 kHz. Each of the pure tone was repeated 10 times and 
interleaved with a silent block of 30 seconds. 

B. Calculation of the Characteristics of Neural Activity 

Three characteristics were extracted from the recorded 
LFPs, i.e., amplitude of evoked potential from the onset 
activities, and band-specific power and phase locking value 
(PLV) from the steady-state activities. 

1) Characteristic of the Onset Activities 
It is known that spatial pattern of the amplitude of evoked 

potential depends on the sound frequency, and machine 
learning can discriminate them [4, 5]. Thus, SLR first tried to 
discriminate sound frequency from the amplitudes of evoked 
potentials. Fig. 1 (a) shows the representative plot of the 
recorded LFP. In the 4th layer of the auditory cortex, auditory 
evoked middle-latency potentials were recorded as negative 
amplitudes. The absolute values of the minimum peak of LFPs 
before 50 ms from the sound onset (4, 16 and 40 kHz, 60 dB 
SPL) were defined as the characteristic of the onset activities. 

2) Characteristics of the Steady-state Activities 
Fig. 1 (b)(i) shows the representative plot of recorded LFP 

in response to a continuous sound. As this plot indicates, in the 
LFP under anesthesia, some spindles occurred regardless of 
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Figure 2. SLR decoding of test frequency from onset activity and from band-specific powers of steady-state activities 
(a) Representative spatial pattern of onset activity in response to varied test frequency: (i) 4 kHz, (ii) 16 kHz, and (iii) 40 kHz. (b) Representative spatial 

pattern of high-γ power of steady-state activity under varied stimulus conditions: (i) silence, (ii) 16 kHz, and (iii) 40 kHz. The duration of time window is 900 
ms. (c) Decoding accuracy. For steady state activities, bands and the duration of time window served as parameters. Asterisks indicate that the decoding 

accuracy was better than the chance level: *, p < 0.01; two-sided one-sample t-test. Daggers indicate that the decoding accuracy was better than all lower 
bands: †, p< 0.01; two-sided two-sample t-test. Abbreviations: A, anterior; D, dorsal. 

the sound representation. Therefore, we eliminated the LFPs 
under spindle activities from analysis by the following way. 
First, LFPs were filtered with a passband of 11 – 16 Hz, where 
spindles were included, and instantaneous amplitude was 
extracted by Hilbert transform (Fig. 1 (b)(ii)). From the part of 
it, threshold to determine spindles was calculated as the 
summation of the average and three times the standard 
deviation of root mean square of the instantaneous amplitude.  
This threshold was calculated in each rat, then, it divided all 
LFPs into spindle and non-spindle waves.  

For analysis, we cut time windows in 6 different lengths. 
First, we cut one-hundred 1000-ms time periods every 500 ms 
(Fig. 1 (b)(iii)) in each sound frequency. From these time 
periods, we obtain time windows with 6 different lengths (100, 
300, 500, 700, 900, 1000 ms) from the beginning of the time 
periods (Fig. 1 (b)(iii)). 

From the LFPs within these time windows, we extracted 
band-specific power and PLV [9] in 5 bands (theta, 4 – 8 Hz; 
alpha, 8 – 14 Hz; beta, 14 – 30 Hz; low-gamma, 30 – 40 Hz; 
high-gamma, 60 – 80 Hz). The band-specific power was 
calculated as the root mean square of the band-pass filtered 
LFPs within time windows at each recording sites. In addition, 
PLV between all pairs of recording sites was calculated 
according to (1).  

  

In this equation, j and k indicate the recording site number, 
theta indicate instantaneous angle obtained by Hilbert 
transform of filtered LFP, T indicates the time included in the 
time window, and i is the imaginary unit. 

3) Decoding of the Sound Frequency 
SLR [6] attempted to decode the sound frequency from 

three characteristics of neural activities indicated above. 
Actually, we used SLR toolbox ver1.2.1 alpha [10] as the 

decoding software. The discriminations were executed 
separately in each rats, frequency band, and the length of time 
windows. 

In the decoding from onset activities, SLR discriminated 
three sound frequencies (4 kHz, 16 kHz, and 40 kHz) and this 
discrimination was cross-validated for 5 times. In the 
decoding from the steady-state activities, SLR discriminated 
three stimulus conditions (first 30-second silence, 16-kHz 
pure tone presenting, and 40 kHz pure tone presenting) and 
this discrimination was cross-validated for 10 times. 

After decoding, we evaluated the decoding performance of 
three characteristics. As the index of discriminating 
performance, accuracy rate, which indicates the percentage of 
successful discrimination from the test data, was compared. 

III. RESULTS 

Fig. 2 (a) shows the representative spatial patterns of the 
amplitude of evoked potentials in onset activities. Because the 
activation focus at onset depended on sound frequency, high 
decoding performance was achieved with the decoding 
accuracy at 92.9 % (Fig. 2 (c)). 

On the other hand, band-specific powers in the steady state 
responses did not show distinct spatial patterns (Fig .2 (b)). 
Nonetheless, the decoding accuracy increased with the length 
of time window; when the time window was 300 ms or longer, 
the accuracy was significantly better than the chance level in 
all bands tested. The highest accuracy was achieved in the 
high gamma band when the time windows were prolonged up 
to 900ms.  

Fig. 3 (a) shows the PLV patterns in the steady-state 
activity. PLV patterns have an extremely high dimension, i.e., 
about 5000, without distinct patterns. Yet, these PLV patterns 
were again decodable with the accuracy above the chance 
level in all bands when the time window was 300 ms or longer. 
In addition, the accuracy was again best in the high gamma 
band with the time window of 900ms. 
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Figure 3. SLR decoding of test frequency from phase locking pattern of steady-state activities 

(a) Representative pattern of high-γ PLV of steady-state activity under varied stimulus conditions: (i) silence，(ii) 16-kHz，(iii) 40-kHz tone presentation. 
The duration of time window is 900 ms. (b) Decoding accuracy. For each band indicated, the accuracies were estimated in each duration of time windows 
separately. Asterisks indicate that the decoding accuracy was better than the chance level: *, p < 0.001; two-sided one-sample t-test. Daggers indicate that 

the decoding accuracy was better than all lower bands: †, p< 0.01; two-sided two-sample t-test. 

IV. DISCUSSIONS 

As expected, the decoding accuracy of onset activity was 
sufficiently high, i.e., 92.9 % (Fig.2 (c)). This is due to the 
tonotopic map in the auditory cortex [1], which generates the 
localized spatial pattern of evoked potentials [2]. Thus, some 
previous studies showed that the sound frequency can be 
easily discriminated from the spatial pattern of evoked 
potentials, using SVM or k-nearest neighbor algorithm [4, 5]. 
In these previous studies, the sample size was larger than the 
dimension of input vector. On the other hand, the sample size 
in this study was smaller than the dimension of the input 
vector. Under such condition, machine learning such as SVM 
does not perform well because of over-training resulting in 
low decoding accuracy [11] . The high accuracy in the present 
result thus indicates that SLR avoided the overtraining. 
Similar advantage of SLR was also demonstrated in fMRI 
study, where SLR showed high decoding performance under 
the small sample size [12]. Thus, SLR is useful for the 
decoding from neural activity, specifically when the sample 
size is small. 

SLR decoding demonstrated that the sound frequency is 
represented not only in the onset activity but also in the 
steady-state neural activity (Fig. 2 (c), Fig. 3 (b)). In both of 
the band power and PLV, discrimination accuracy of 
high-gamma band was the best (Fig. 2 (c), Fig. 3 (b)). 
Discrimination accuracy increased with the length of time 
windows, suggesting that these features have some fluctuation 
on the order of 100 to 1000 ms. In addition, the best decoding 
performance was achieved in the high-gamma band. This band 
mainly reflects the activities from the cortical inhibitory 
interneurons [13]. These results are consistent with a notion 
that cortical interneurons play important roles in the sparse 
representation of sound information in the steady state. 

V. CONCLUSION 

In this study, we tried to extract the sound frequency 

information from the onset and steady-state neural activity in 

rat auditory cortex, using machine learning. As results, SLR 

could discriminate the sound frequency from steady-state 

neural activity, especially from the band power and PLV in 

high frequency band. From these results, steady-state neural 

activity in auditory cortex represents the sound information, 

such as sound frequency.  
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