
  

  

Abstract — Mental workload and time-on-task effect are two 

major factors expediting fatigue progress, which leads to 

performance decline and/or failure in real-world tasks. In the 

present study, electroencephalography (EEG) is applied to 

study mental fatigue development during an air traffic control 

(ATC) task. Specifically, the frontal theta EEG dynamics are 

firstly dissolved into a unique frontal independent component 

(IC) through a novel time-frequency independent component 

analysis (tfICA) method. Then the temporal fluctuations of the 

identified frontal ICs every minute are compared to workload 

(reflected by number of clicks per minute) and time-on-task 

effect by correlational analysis and linear regression analysis. It 

is observed that the frontal theta activity significantly increase 

with workload augment and time-on-task. The present study 

demonstrates that the frontal theta EEG activity identified by 

tfICA method is a sensitive and reliable metric to assess mental 

workload and time-on-task effect in a real-world task, i.e., ATC 

task, at the resolution of minute(s). 

 

I. INTRODUCTION 

Mental fatigue is a gradual and cumulative brain process 
linked to decreased sustained attention, reduced effort, and 
impaired performance efficiency or even failures [1]. It is 
believed that mental fatigue is a major hazard of accidents or 
injury when driving or when performing tedious and/or 
repetitive tasks for a long time. Air traffic control (ATC) task 
is a complicated cognitive task, which requires operators to 
focus on task for long time in a dimmed-light environment. 
The operators likely become fatigue due to accumulated 
workload [2] and/or time-on-task [3]. Therefore, it is of 
fundamental significance to assess and measure operators’ 
mental workload and/or time-on-task effect. Accurate 
monitoring of mental workload and/or time-on-task effect is 
helpful to predict performance decline and further prevent the 
occurrence of catastrophic loss. 

Among the many psychological and psychophysiological 
measurement methods, electroencephalography (EEG) that 
directly measures the functions of central nervous system has 
been validated as a sensitive and reliable means to assess 
mental processes [4-8]. Lots of EEG indices from different 
frequency bands and brain regions have been proposed to 
measure mental workload or fatigue [5, 9]. Among such EEG 
indices, frontal theta activity is reported to have a robust 
increase as the mental effort, workload augment, 
time-on-task effect, and fatigue processing [5, 8, 9]. The 
frontal theta activity is also observed in many cognitive tasks 
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that require concentration, attention, conflict monitoring, 
performance monitoring, and working memory with its 
neural substrates in prefrontal cortex, specifically in anterior 
cingulate cortex (ACC) [10-15]. Such cognitive functions are 
vital in ATC tasks. Taken all together, the present study 
focuses on the frontal theta EEG activity, and its sensitivity 
as a measure metric for mental workload and/or time-on-task 
during an ATC task simulated in CTEAM V2.0 [16] are 
investigated. 

Unfortunately, EEG signals are very weak and always 
contaminated by ocular and muscular activations. Also, EEG 
signals measured on the scalp are generated from multiple 
neural sources that perform different cognitive functions. 
Moreover, in ATC tasks, EEG is continuously recorded with 
no repetitive well-defined events/stimuli as those in classic 
cognitive tasks. Therefore, it is not easy to characterize the 
frontal theta activity by directly selecting one or several 
specific channels, such as channel FCz. Furthermore, the 
requirement of time resolution in the assessment of workload 
in real ATC tasks is not as high as that in cognitive studies 
(i.e., millisecond). Hence, in the present study, a novel 
time-frequency independent component analysis (tfICA) is 
implemented and applied to disentangle the frontal theta 
activity into ICs with one second resolution. In our previous 
study [17], the tfICA method has been validated as a useful 
method to probe neural activations in the continuous EEG 
signals. After obtaining the frontal ICs, their spatial and 
spectral patterns are examined. Then the spectral fluctuations 
of frontal ICs are investigated against workload levels 
reflected by behavioral data (i.e., number of clicks per 
minute), and the time-on-task effect. 

II. MATERIAL AND METHODS 

A. Subjects and experiment 

Eleven subjects (all males, ages: 25±4.3), recruited at 
University of Oklahoma, participated in this study after 
obtaining their written informed consent. The experiment 
protocol was approved by the IRB committee of the 
University of Oklahoma. 

Subjects performed an air traffic control task, simulated 
in software C-Team V2.0 [16]. A typical scenario of the 
operational interface can be seen as Fig. 1 in [17].  Subjects 
were required to safely navigate the airplanes to the assigned 
destinations (i.e., airports or exits), by adjusting the heading 
direction, speed and level on the command panel using a 
mouse (see Fig. 1 in [17]). The entire experiment included 
one training session (0.5 hour), and two recording sessions 
(of 1 hour each). The three sessions were conducted on 
different days. The behavior performance including number 
of warnings, number of crashes, number of clicks per minute 
and activation time for each airplane were analyzed in 21 
sessions (one session’s behavior data was not recorded) [17]. 
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Figure 1. Frontal ICs identified from two sessions in all subjects: (A) 

individual scalp maps of magnitude for different sessions with the 

averaged one on the top right corner, (B) individual normalized spectra 

with the averaged one as the red curve, (C) individual scalp maps of 

transformed real-part mixing matrix with the averaged one on the top 

right corner, (D) 3-D dipole source locations (colored spheres for 

different sessions) and their projection to the MNI template head 

images. Labels above each plot in (A) and (C) represent subject number 

(‘S1’ denotes subject #1) and session number (‘s1’ denotes session #1). 

The behavioral data indicated that all subjects give their best 
performance during the task. For more details about the 
experimental and behavioral data, please refer to [17]. 

B. EEG acquisition and preprocess 

A 128-channel Net Amps 300 amplifier (Electrical 
Geodesics Inc. OR, USA) was used to record EEG signals 
with sampling frequency of 250Hz and the reference channel 
at Cz. EEG data were offline downsampled to 125Hz and 
band-pass filtered (i.e., 0.2~30Hz). Infomax ICA from 
EEGLAB toolbox [18] was performed on processed EEG 
data to remove artifactual ICs related to ocular, cardiac and 
muscular activities. The residual EEG signals were used for 
further analysis. 

C. Time-frequency independent component analysis 

A novel tfICA method was adopted to disentangle the 
frontal theta EEG activity from mixed EEG signals into a 
unique IC [17]. The tfICA method integrated time-frequency 
analysis and ICA model to explore the independence of 
neural sources in both temporal and spectral domain. 
Preprocessed EEG signals were firstly transformed into 
spectral domain by short-time Fourier transformation with a 
one second Hanning window to obtain the time frequency 
representation (TFR) of EEG signals with the dimension as 
(Nc!Nt!Nf : Nc is the number of channels (i.e., 128), Nt is the 
number of windows (i.e., 3600), Nf is the number of 
frequency bins (i.e., 64)). The three dimensional (3D) TFRs 
of EEG were further arranged into two dimensions (2D) as 
(Nc!(Nt!Nf)) by selecting the frequency bins from 5 to 30 Hz. 
After replacing outlier segments that exceeded 3 times 
standard deviation with neighboring ‘good’ segments, the 2D 
TFR complex-valued data were decomposed into 25 ICs by a 
complex-valued ICA model [19]. More details about tfICA 
method were described in [17].  

D. Frontal ICs 

From the 25 ICs calculated by tfICA method, the one 
with the most typical frontal spatial pattern and theta spectral 
pattern were selected as the frontal IC to represent the frontal 
theta EEG activity. One frontal IC was selected from each 
session data except two sessions (S8s1 and S10s2), where the 
frontal IC was not detected. For these two sessions, the 
frontal theta IC spatial pattern from the other session within 
the same subject was adopted and the temporal-spectral 
patterns were calculated accordingly. After identification of 
frontal ICs, the spatio-temporal-spectral characteristics of the 
frontal theta EEG activity were probed as follows: 

1) The neural generators of frontal theta activity were 
located by a dipole source based inverse problem solution 
using the DIPFIT function in EEGLAB with MNI template 
head model [18]. Since the obtained mixing matrix is 
complex-valued [17],  a further transformation as that in [20] 
was performed to move the phase shift information to 
imaginary part of complex-valued mixing matrix and the 
real-part of the transformed mixing matrix was used for the 
source localization.  

2) The frontal theta activity was compared to concurrent 
task workload indexed by number of clicks per minute since 
all navigation commands were performed by mouse clicks: a) 
the power spectrum densities (PSDs) of frontal ICs from high 
workload (one second segments in which number of clicks 

larger than median value of number of clicks per session) and 
low workload (one second segments in which number of 
clicks less than median value of number of clicks per session) 
was statistically compared for individual frequency bin 
across sessions (i.e., 21 sessions) and subjects (i.e., 11 
subjects); b) The theta (5 to <8Hz) dynamics of frontal ICs 
were further correlated to number of clicks per minute by a 
Pearson correlation analysis; c) the linear regression models 
were built on the mean theta activities of one minute by 
sorting the theta activities with number of clicks per minute 
in ascend order for every session. 

3) The frontal theta dynamics was compared to 
time-on-task on a minute scale: the workload related effect 
was firstly subtracted from the original rhythmic theta 
activities by the trained linear regression model with number 
of clicks per minute. Then another linear regression analysis 
was conducted on the remaining theta activities to test 
whether the frontal theta dynamics is significant reflecting 
the time-on-task effect. 

III. RESULTS 

 A. Spatial and spectral patterns of frontal ICs 

The spatial and spectral patterns of the frontal ICs 
identified from each session were illustrated in Fig. 1. It can 
be seen that 20 ICs were identified from 22 sessions except 
two sessions, i.e., S8s1 and S10s2. The frontal ICs have the 
evident spatial patterns as a focal distribution in the frontal 
area (magnitude of mixing matrix in Fig. 1 (A) and real-part 
of mixing matrix in Fig. 1 (C)), and evident theta peak in the 
spectral patterns (Fig. 1 (B)). The spatial and spectral patterns 
were more similar within the subject than across the subjects. 
Furthermore, the neural generators of frontal ICs were 
localized from the real part of the spatial patterns (Fig. 1 (C)) 
and displayed in Fig. 1 (D). A single dipole source can well 
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Figure 2. The averaged PSDs of frontal ICs from high and low 

workload levels across sessions and subjects. Blue horizontal line 

denotes the frequencies exhibiting significant power difference (p<0.01 
across subjects and p<0.001 across sessions). 

 
Figure 3. Linear regression analysis of theta temporal dynamics of 

frontal ICs in 21 sessions after (A) and before (B) subtracting workload 

effect. In each plot, the dots represent the IC’s normalized theta 

activities in one minute, the line is the trained regression model whose 

color indicates the significance of slope (red: p<0.05), and the dashed 

line denotes negative slope while solid one denotes positive slope. 

explain the spatial distribution of frontal ICs with the mean 
residual variance as 4.6% (SD: 3.5%). The dipole sources 
were located in the vicinity of ACC with the mean Talairach 
coordinate as (-1, 32, 10) (Brodmann area 24). 

B. Effect of workload 

The averaged PSD of the frontal ICs for different 
workload levels were plotted in Fig. 2. The t tests across 21 
sessions and 11 subjects revealed that the powers at 6 Hz and 
7 Hz frequencies (i.e., theta band) significantly increased at 
the high workload level relative to low workload level 
(p<0.001 across sessions and p<0.01 across subjects). These 
observation were further corroborated with the correlation 
analysis of rhythmic theta activities and number of clicks per 
minute. Positive correlation coefficients in theta activities 
were identified in 20 sessions, in which 16 sessions reached 
significant level (p<0.05). Such phenomena were not 
observed in alpha (8 to <13Hz) and beta (13 to 30Hz) band 
activities of frontal ICs (alpha: 14 positive (6 significant) and 
7 negative (3 significant); beta: 15 positive (4 significant) and 
6 negative (3 significant)). The linear regression analysis also 
revealed 20 positive slope linear regression models of theta 
activities with the increased number of clicks with 15 
sessions within significant level (p<0.05). Both detections of 
significant positive correlation coefficients and positive slope 
regression models were significant in terms of binomial test 
(p<0.01 for correlation and p<0.05 for regression). The 
missed detections of significant positive values happened in 
S7s1 and both sessions of S10 and S11. 

C. Temporal dynamics with time-on-task 

The regression analysis results of the theta temporal 

activities from frontal ICs of 21 sessions after the subtraction 

of workload related frontal theta dynamics were displayed in 

Fig. 3 (A). Similar to the session performance of significant 

correlation with number of clicks, positive slope regression 

models were identified in 19 sessions, in which 14 reached 

significant level (p<0.05). This detection was also significant 

(p<0.05). The missed detections happened in S8 in addition 

of those sessions with missed detections in correlation with 

workload. 

In comparison, the regression analysis results of the 

original theta activities (without removing the effect of 

workload) with time-on-task were displayed in Fig. 3 (B). 

Although it had similar detection of positive (significant) 

slope regression models (19(12)), the session performance 

were very different. If four sessions from S10 and S11 were 

excluded as no significant relationships between frontal theta 

activity and workload within these sessions, the detection of 

significant positive slopes would decrease to 8, which was 

insignificant (p=0.8). 

IV. DISCUSSION 

In the present study, the dynamics of frontal theta EEG 
activity is investigated in a realistic ATC task. To dissolve 
the frontal theta activity from the mixed EEG signals, a 
novel tfICA method is applied. It is seen that frontal ICs can 
significantly detected by the tfICA method, and the neural 
substrates of identified frontal ICs are located into the ACC 
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area, which is consistent with literatures [10, 13, 14]. It 
reflects the nature of ATC tasks, which require ATC 
operators to make continuous cognitive effort to navigate 
airplanes, optimize their navigation routines, and monitor 
airplanes to avoid crashes. 

 Though the appearance of airplanes was fixed in the 
present ATC task (i.e., two airplanes per minute), the 
instantaneous workload changed due to different navigation 
strategies used by individual operators. Therefore, we 
evaluate the instantaneous workload by number of clicks per 
minute, which reflect the operators’ mental effort to meet the 
requirement of the fluctuated workload. From the identified 
frontal ICs, spectral power in theta band is observed to be 
significantly larger in high workload than that in low 
workload, which is in agreement with previous studies [5, 8, 
9, 15]. Moreover, the significant detections of significant 
positive correlation and significant positive slope regression 
models between rhythmic theta activities and number of 
clicks indicated that the frontal theta activity is a sensitive 
and reliable metric to assess the workload levels during an 
ATC task. 

Two kinds of linear regression analysis between 
rhythmic theta activities and time-on-task were performed in 
the present study. It can be seen that both regression models 
reveal larger number of significant positive slopes as 
compared to negative slopes, which indicates that frontal 
theta EEG activity increase with time-on-task, which is also 
consistent with previous studies [5, 7-9]. While these two 
regression models had significant difference and the one 
after the removal of workload effect is more consistent with 
the performance in detecting workload effect from frontal 
theta activity (i.e., the missed detections of significant 
relationships are mainly happened in same subjects, i.e., S10 
and S11). Meanwhile, the significant relationship between 
frontal theta activity and workload implies the frontal theta 
activity is largely influenced by workload. Therefore, it can 
be concluded that such factors, e.g., workload, are better to 
be removed when the time-on-task effect is investigated by 
EEG signals, and the frontal theta activity is a sensitive and 
reliable metric to assess the time-on-task effect during ATC 
tasks.  

In the present study, missed detections of significant 
relationship between frontal theta activities and 
workload/time-on-task occurred in some sessions. One 
possible reason may be that the frontal IC is not well 
decomposed due to the noise, e.g., missed decomposition in 
S8s1 and S10s2, and more than one decomposition of frontal 
theta activity in both sessions from S11. Therefore, more 
efforts are needed to identify the “good” frontal ICs by 
further discarding artifacts like electromyogram (EMG). 

In conclusion, the present study justified that the frontal 
theta EEG activity is a sensitive and reliable metric to assess 
workload and time-on-task effect during an ATC task at the 
resolution of minute(s). It also demonstrated the potential 
capability of tfICA method in probing neural activations from 
continuous EEG in real world tasks. As a following work, the 
tfICA method will be applied to analyze EEG signals 
recorded in real field where the experienced ATC officers 
perform a high fidelity ATC task. 
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