
  

 

Abstract— Shared control is emerging as a likely strategy for 

controlling neuroprosthetic devices, in which users specify high 

level goals but the low-level implementation is carried out by 

the machine. In this context, predicting the discrete goal is 

necessary. Although grasping various objects is critical in 

determining independence in daily life of amputees, decoding of 

different grasp types from noninvasively recorded brain 

activity has not been investigated. Here we show results 

suggesting electroencephalography (EEG) is a feasible modality 

to extract information on grasp types from the user’s brain 

activity. We found that the information about the intended 

grasp increases over the grasping movement, and is 

significantly greater than chance up to 200 ms before 

movement onset.      

I. INTRODUCTION 

There were an estimated 40,000 upper limb amputees in 
the US in 2012. Highly articulated anthropomorphic 
neuroprostheses provide an opportunity to change amputees’ 
quality of life by allowing them to perform tasks 
independently. Advances in surgical procedures like targeted 
muscle reinnervation (TMR) [1] combined with pattern 
recognition techniques [2] have allowed classifying the 
electromyographic (EMG) patterns from targeted muscles to 
control prosthetic functions like moving the arm and basic 
grasping. Here we evaluate the feasibility of using 
electroencephalography (EEG), a noninvasive and portable 
technique to record brain activity at the scalp, as a source 
signal for controlling grasp types. This technique could 
potentially complement TMR by allowing TMR to focus on 
arm movement rather than grasp postures. 

Recent studies have shown the possibility of decoding 
kinematic parameters of movement during individuated 
finger movements and simple grasping motion from 
electrocorticographic (ECoG) signals in humans [3], [4]. A 
two grasp classification was reported recently with ECoG in 
humans [5]. A highly discriminative feature seen in these 
studies is the local motor potential (LMP), which is the low-
pass filtered ECoG signal. We have demonstrated the 
feasibility of EEG to decode continuous hand kinematics 
during grasping by extracting an LMP-like feature by low-
pass filtering the EEG [6]. 

With advances in machine learning algorithms, shared 
control between prosthetics and the brain has become reality 
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[7], [8]. In a shared control paradigm, we only need to 
determine the type of grasp intended, and the machine can 
implement the actual grasp. In this study, we classify five 
grasp types from EEG during self-initiated reach-to-grasp 
movements. We present results showing the evolution of 
classification accuracies during movements, and quantify the 
information gained by performing the classification.     

II. METHODS 

A. Experiment design and Data Acquisition 

Simultaneous EEG and hand kinematics were recorded 
from five healthy participants while they performed a 
grasping task. Subjects were seated with five objects 
(calculator, CD, espresso cup, zipper and a beer mug) 
arranged in front of them in a semicircle with radius 30 cm. 
The initial position of the hand before a grasping trial was at 
the center of the semicircle. An auditory cue (2 kHz tone for 
100 ms) was presented at the beginning of each trial, on 
hearing which subjects were instructed to randomly select, 
reach and grasp any of the five objects. Subjects held a steady 
grasp until the presentation of a second auditory cue (1 kHz 
tone for 200 ms; 5 s after the first cue), on hearing which 
participants returned their hand to the initial position. One 
such grasping movement constituted one trial. A baseline of 7 
s was allowed between consecutive trials. We chose the five 
objects in our study so as to sample the ‘grasping workspace’ 
evenly [9]. On average, subjects performed 210 trials each, 
over 4 or 5 blocks.  

Whole head EEG was recorded using a 64 channel cap 
(HCGSN, EGI Inc.), amplified and digitized at 50 Hz with a 
resolution of 0.1 μV (Net Amps 300, EGI Inc.). Trajectories 
of 23 hand joint angles were recorded with a wireless data 
glove (CyberGlove, Immersion Inc.) at 35-70 Hz with a 
resolution of 0.9°.  

B. Preprocessing 

EEG and kinematics were resampled to 100 Hz and band-
pass filtered between 0.1-1 Hz as explained in [6]. Data were 
further segmented into trials from -0.5 to 2.5 s with respect to 
movement onset, followed by baseline correction [6]. 
Principal Component Analysis (PCA) was then applied on 
the kinematics to reduce the dimension from 23 joint angles 
to 2 Principal Components (PCs).   

Classification of EEG into one of the five object classes 
was performed for each time     [     ] , in two steps: 1) A 
prediction was made for the continuous values of the 
kinematic PCs. 2) This prediction was classified into one of 
the five discrete classes. To predict the PC trajectories, a 
linear model embedded within a genetic algorithm (GA) to 
select an optimized EEG sensor set was used [6]. Each PC 
was modeled as  
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                    [ ]     ∑     [   ]   ,               (1) 

where   [ ] is the value predicted for the     PC at time  ,    
are the model parameters,    are the EEG sensor values for 

the    sensor,          is a delay parameter from EEG to 
kinematics to account for the cortico-spinal delay, and   is 
the optimal set of EEG sensors selected by the GA. Model 
structure (determination of  ) was validated using a leave-
one-out cross validation scheme [6], and the median of 
correlation coefficients across validation folds was used as an 
optimization metric in the GA [6]. Model parameters (    
were set to the mean of parameter values across folds.  Eq. 
(1) was then used to obtain PC1 and PC2 predictions for each 
trial.  

C. Classification and Information Analysis 

To classify data at each     [     ] , we maximized the 
conditional class probability       { } 

  , where   is a 
categorical random variable representing the object being 
classified,     {         } is the class and { } 

  represents 
data till time step   . This expression can be cast in a 
recursive form using Bayes’ theorem: 

      { } 
            { } 

     

                          { } 
        { } 

    ,          (2) 

where   is the constant of normalization and is independent 

of  .  The likelihood function        { } 
     is modeled as 

a normal distribution, with the parameters       [    ] and 

      [(          )
 
] of the distribution estimated for 

each time step     and each class   from training data. A 
leave-one-out cross-validation scheme was used for 
classification validation. The prior probability for time step 
   is the posterior from time     , which makes the 
calculation recursive. Initial priors were assigned to be 
           for each of the five classes  . At each time 
step   , the class   which maximizes       { } 

   is 
assigned as the classifier output. Confusion matrices and 
classification error rates are thus obtained for each time step, 
across all validation folds. Logarithms were used to avoid 
computational errors due to small numeric values of 
probabilities.  

An information theoretic measure to quantify information 
gained from the classifier is the mutual information between 
the true class   and predicted class  .  

                 ∑     ∑           
      

      .             (3) 

where        is available as the suitably normalized 
confusion matrix at each time step. Eq. 3 was used to 
compute mutual information contained in the confusion 
matrix at all time steps, for all participants. The distribution 
of trials performed by each subject was bootstrapped 1000 
times to obtain bootstrapped confusion matrices, error rates 
and information scores. 95% confidence bounds on these 
indices were obtained from the bootstrapped distributions.  

III. RESULTS 

Fig. 1(a) shows the mean PC1 trajectories of subject S1 
for all objects. An example of the recursive Bayesian 
calculation (Eq. (1)) is shown in Fig. 1(b). Notably, the 
Bayesian classifier performs accurately 0.8 s into the trial, 

when the test trajectory is correctly classified as an espresso 
cup even though it is closer to the mean trajectory of a beer 

mug (Fig. 1).    

Fig. 1(b) suggests that the classification accuracy across 
folds should increase as the trial progresses. This is 
confirmed by observing that the confusion matrix becomes 
diagonal as the trial progresses. We expected that the errors 
made by the classifier would be distributed such that classes 
whose grasp kinematics are similar would be confused with 
each other more often. This was confirmed in the confusion 
matrices, where errors in predicting an espresso cup were 
highest for a zipper, as both objects require a pinch-like 
grasp. Likewise, the level of errors between objects requiring 
a whole-hand grasp, i.e. the calculator and CD, were highest 
compared with other objects.  

 

Fig. 2. Evolution of confusion matrices. Confusion matrices were generated 
at each point in time with predictions of PC trajectories from EEG. Snapshots 
of confusion matrices are shown for classification with PC 1 (top row), PC 2 
(middle row) and PC 1-2 combined (bottom row) for data from participant 
S1. Movement onset is at 0 s. For each matrix, the true class is along rows 
and the predicted class along columns. The color map represents 
                                  for each element       of the 
matrix. As the trial progresses, the matrices becomes diagonal, indicating 
better classification performance. Moreover, the errors in classification were 
not random; objects requiring similar grasp types were misclassified more 
often with each other. A CD was often misclassified as a calculator (both 
objects require a whole hand grasp) and the zipper for an espresso cup (both 
requiring a pinch-like grasp), as marked by the red squares. 

Fig. 1. PC1 kinematics and class probability evolution. The top panel shows 
mean trajectories ± std. deviation (shaded regions) for PC1 trajectories for 
participant S1. Also shown in black is an example trial for grasping an 
espresso cup. The bottom panel shows the evolution of class probabilities 
predicted from EEG for this trial. Class probabilities are close from 
movement onset (0 s) till 0.5 s, after which the highest class probability is 
that for the espresso cup. The advantage of using a recursive Bayesian 
method is seen here: at 0.8 s, the test trajectory is closer to the beer mug, but 
the Bayesian classifier correctly classifies it an as espresso cup.    
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Fig. 3. Evolution of  classifier information. The Bayesian classifier was applied to PC1, PC2 and combined PC 1-2 trajectories, both from EEG predictions 
and recorded kinematics, for all subjects. The information score, which gives the percentage of maximum possible information gain due to the classifier, was 
calculated from the confusion matrices at each point in time (Eq. (3)). The first five graphs in the above figure show information scores for all subjects (S1 – 
S5), with the mean across subjects shown in the last graph. The information score steadily increases over the trial for all subjects (Movement onset at 0s). 
Classification with PC1 and 2 combined (red traces) results in the highest information transfer, followed by PC1 (blue traces). PC2 (green traces) had a 
throughput significantly lower than PC1 after the first 0.5 s. Although there was a trend for information from EEG (solid lines) to be lower than from 
kinematics (broken lines), there was no significant difference at        level. A histogram of movement end times is indicated by the shaded gray region, 
from which it is noticeable that 50% of the information is already available halfway through the movement (1s). The information available about grasp types 
is significantly greater than chance up to 200 ms before movement onset. 95% confidence intervals are indicated by shaded regions around trajectories.       

 

Fig. 4. Locations of optimal EEG electrodes. The percentage of times an 
EEG electrode was selected for the GA to predict trajectories for PC1 (left) 
and PC2 (right) is shown above as a spatial distribution on the scalp. 
Recruitment of electrodes suggests a sparse network involving frontal, 
supplementary motor and motor as well as parietal cortices. Electrodes (black 
dots) on the periphery are set to zero to eliminate extrapolation artifacts.    

The maximum information that the classifier can provide 
is the entropy of the prior uniform distribution of objects, 
which was used to normalize the mutual information and 
obtain an information score (Fig. 3). Across the five 
participants in the study, the entropy of the prior was 2.31± 
0.01 bits (For a uniform distribution on five classes, the 
entropy is            bits). We calculated the information 
score for classifiers using PC1, PC2 and PC1-2 combined, for 
both predictions from EEG, and recorded kinematics, for all 
subjects (Fig. 3). As expected, the information score 
increases steadily over the trial duration, and 50% of the 
information is available midway through the movement. 
Classifier performance using both PC1 and 2 was highest, 
though not significantly greater than PC1 (      ). PC2 
performance was the lowest. Although classification 
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performance from EEG appeared to be lower than 
kinematics, we found no significant differences, indicating 
that the EEG extracts almost all information available about 
kinematics.  

To find out the common EEG electrodes being recruited to 
predict PC1 and PC2 trajectories, we plotted a spatial 
histogram of the percentage of times an EEG electrode was 
selected by the genetic algorithm across subjects (Fig. 4).  Of 
interest, the scalp maps showed not only relevant 
contralateral EEG channels but also ipsilateral sensors. The 
spatial scalp maps suggest recruitment of brain areas 
involved in executive decision-making, primary and 
supplementary motor function as well as visuo-motor 
transformations, all of which are known to be involved in 
self-initiated and self-selected grasping tasks.         

IV. DISCUSSION 

Quantification of information available from EEG for 
classification of grasp types is critical in a shared control 
paradigm for brain-machine interfaces [7], [8]. We show in 
this study that a computationally efficient recursive Bayesian 
method with EEG-predicted PC1 and PC2 trajectories is 
close to optimal when compared with information contained 
in the hand kinematics (Fig. 3). Moreover, misclassifications 
occur between objects with similar grasp types. Information 
available about the intended grasp type was available up to 
200 ms before movement onset. On average, 1.16 bits were 
available 1s into the movement, and 1.51 bits by the end of 
movement (2s).      

  Participants performed the movements in a self-selected, 
self-initiated manner. A large number of brain areas are 
known to be recruited under such conditions [10], [11]. A 
spatial histogram of channels recruited by the GA across 
subjects revealed patterns of EEG electrode selection 
consistent with earlier studies [5], [11]. 

A recent study [5] predicted from ECoG between two 
grasp types (precision and whole-hand) with over 90% 
classification accuracy. That study found that decoding 
accuracy peaked around movement onset, while in our study 
we found that it increases steadily until the end of movement. 
A possible explanation might be due to our use of a recursive 
Bayesian method, which takes into account the past 
information.  

The genetic algorithm is computationally intensive and 
required 10 to15 minutes to complete (tested in MATLAB on 
a 2.4 GHz quad-core dual processor machine running 
Windows 7). However, once the decoder model was created, 
the time required to make predictions on unseen data was less 
than the time span of the data (recorded at 100 Hz), 
indicating applicability for real time applications.  

In conclusion, we show that classification of grasp types 
from EEG is feasible. We propose to use the evolving 
prediction about the intended grasp type to inform a 
neuroprosthetic which selects and implements a suitable 
grasp trajectory. The noninvasive nature of EEG allows such 
an approach to be readily accepted, making the impact 
broader. 
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