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Abstract— Intracortical neural recordings are typically high-
dimensional due to many electrodes, channels, or units and
high sampling rates, making it very difficult to visually in-
spect differences among responses to various conditions. By
representing the neural response in a low-dimensional space,
a researcher can visually evaluate the amount of information
the response carries about the conditions. We consider a
linear projection to 2–D space that also parametrizes a metric
between neural responses. The projection, and corresponding
metric, should preserve class-relevant information pertaining
to different behavior or stimuli. We find the projection as a
solution to the information-theoretic optimization problem of
maximizing the information between the projected data and
the class labels. The method is applied to two datasets using
different types of neural responses: motor cortex neuronal firing
rates of a macaque during a center-out reaching task, and local
field potentials in the somatosensory cortex of a rat during
tactile stimulation of the forepaw. In both cases, projected data
points preserve the natural topology of targets or peripheral
touch sites. Using the learned metric on the neural responses
increases the nearest-neighbor classification rate versus the
original data; thus, the metric is tuned to distinguish among
the conditions.

I. INTRODUCTION

Although neural recordings may be very high-dimensional,

often stimuli are applied or the behavior is performed in

2–D or 3–D space. This is especially true for motor and

tactile experiments. The similarity among the conditions may

correspond to similarity among behaviors or stimuli, such as

spatial organization of the targets in a reaching task or the

location of touches in a somatosensory task. In these cases,

it may be possible to find a low-dimensional representation

of the neural responses. If this representation preserves the

relationships among the conditions, then it can be used to

help understand distinctions in the neural data between these

conditions.

Alternatively, simply decoding the stimulus from the neu-

ral responses can also gauge the task-relevant information

carried by the neural responses, such as in decoding the

movement during a natural reaching task [1]. This is espe-

cially true if the stimulus exists in a continuous space. How-
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ever, the classification rate alone is insufficient to determine

how the neural response varies on a trial-by-trial basis.

A number of unsupervised methods [2] have been explored

to analyze the similarity between trials and the evolution of

the neural response during trials. Here we have the goal

of finding a low-dimensional representation for visualiza-

tion that preserves similarities among conditions. The low-

dimensional representation is produced by a linear projec-

tion trained using just the discrete labels corresponding to

different conditions. We explore this approach on two real

datasets, and quantify the performance by using nearest-

neighbor assignment as a classifier on the original and

projected spaces.

A. Learning Low-dimensional Representations

Previous research has been conducted on unsupervised

methods for low-dimensional representations of neural data

[3], [4]. While principal component analysis may seem

appropriate for the task, the first two principal components

often fail to produce useful projections of neural data [5].

Non-linear dimensionality reduction algorithms produce

low-dimensional representations without supervision or

knowledge of the temporal ordering within trials [6]. The

representations produced by manifold learning are often

tuned to either preserve local similarities in data, [7], [8],

or to preserve global structure. Consequently, the choice of

emphasizing either local or non-local structure will influence

the projection, and no explicit mapping is found to apply to

novel data.

Another approach is to train state-space models to explain

temporal relationships within time-series data. State-space

models can easily be applied to novel data. They enable

analysis of the trial-wise variance by using a low-dimensional

or discrete state variable to describe the temporal evolution

of the neural response. Gaussian process factor analysis

[9] has been used on neural responses relating to motor

planning and execution. The approach assumes all of the

trials have temporal trajectories that are captured in a low-

dimensional space, and the covariance of these trajectories

can be described by a Gaussian kernel.

Using hidden Markov models to capture the temporal

dynamics with discrete states has also proven useful for

neural data analysis [10], [11], [12] A combination of state-

space dynamics and a discrete state was shown to capture

population responses [13]. In any case, as with purely

unsupervised models, there is no guarantee that a state-space
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model representation, either continuous or discrete, is useful

in distinguishing different conditions.

We consider the case when known labels are used in

training the low-dimensional representation. A classic ex-

ample of this is Fisher discriminant analysis [14], [15]. The

dimensionality reduction can be posed as a metric-learning

problem [16]. The goal of metric learning is to parametrize a

distance function (through a projection) such that examples

from the sample class are deemed close and examples from

different classes are considered far apart. Note also that no

explicit classifier is used in constructing the projection, that

is, the proposed algorithm does not rely on a particular

classifier or the classification error. Instead, the algorithm

explored here [17] solves the metric-learning problem using

information-theoretic quantities [18], [19], and a nearest-

neighbor assignment is performed post-hoc. We compare

against local Fisher discriminant analysis (LFDA) [15], a

state-of-the-art method with an analytic solution based on a

generalized eigenvalue problem.

II. METHOD

A. Neural data representation

Multi-electrode arrays implanted into the cortex can pro-

vide both local field potentials (LFPs) and spike trains

corresponding to series of neuronal action potentials. (Here

the spike trains are quantized to an instantaneous firing rate

using non-overlapping fixed-width bins.) For both LFPs and

firing rates, we consider a single sample from each trial as the

concatenated response of all the selected channels/neurons

for the entire trial. Let xi ∈ R
d denote the combined

population response for the ith trial, i ∈ {1, . . . , n}. Let

li ∈ {1, . . . , L} denote the label corresponding to a certain

condition or stimulus for the ith trial. We wish to find a linear

projection yi = ATxi ∈ R
p,A ∈ R

d×p, p≪ d such that the

projected points {yi} can be used to classify and visualize

the neural responses to different conditions. As discussed,

learning this projection for classification is referred to as

metric learning.

B. Information-Theoretic Metric Learning

Given a set of points and labels {(xi, li)}Ni=1
, we seek to

learn a positive semidefinite matrix AAT, that parametrizes

a Mahalanobis distance between two samples as d(x,x′) =
√

(x− x′)TAAT(x− x′). In terms of the projected sam-

ples y = ATx and y′ = ATx′, the metric is Euclidean

d(x,x′) =
√

(y − y′)T(y − y′). Our goal is to find a

parametrization matrix A ∈ R
d×p such that the conditional

entropy Sα(L|Y ) of the labels {li} given the projected

samples {yi} is minimized. (Here we use p = 2 so the

projected data can be visualized.) We refer to this problem

as conditional entropy metric learning (CEML), and it can

be posed as the following optimization problem:

minimize
A∈Rd×p

Sα(L|Y )

subject to tr(ATA) = p,
(1)

where the trace constraint prevents the solution from growing

unbounded.

Ideally, minimizing the conditional entropy Sα(L|Y )
would require knowing the distributions of Y and L. In prac-

tice however, these distributions are unknown and the only

available information is provided by a sample {(xi, li)}Ni=1
.

A common approach to this problem is to estimate the en-

tropy of the data in a two-stage approach. First, the density of

the data is estimated using methods such as Parzen windows;

the approximated entropy is then computed by plugging this

estimate into the entropy definition. The disadvantage of

this approach is requiring the solution to a rather difficult

problem (density estimation) before the desired quantity can

be obtained.

The authors of [19], [17] propose an alternative method

to circumvent the above two-stage process and obtain a

differentiable quantity that is amenable for optimization.

Instead of computing an estimator of entropy, the authors

propose a quantity that exposes similar properties to Renyi’s

α-order entropy and is based on the data.

Let K be the matrix representing the distance between

samples transformed by a Gaussian function, with user

parameter σ,

Kij =
1

n
exp

(

− (xi − xj)
TAAT(xi − xj)

2σ2

)

, (2)

and L be the matrix of class co-occurrences where Lij =
1

n
if

li = lj and zero otherwise. The proposed conditional entropy

of order alpha can be computed as:

Sα(L|Y ) = Sα (nK ◦ L)− Sα(K) (3)

where Sα(B) =
1

1−α
log (trBα) and ◦ denotes the

Hadamard product. Notice that Bα is a matrix function

for which we can use the spectral theorem to compute the

gradient of (3) at A as:

∇ASα(L|Y ) = XT (P− diag(P1))XA (4)

where

P = K◦(nL◦∇Sα (nK◦L)−∇Sα(K)) , (5)

X = (x1, x2, · · · , xN )T, (6)

∇Sα(B) =
α

(1 − α)tr(Bα)UΛ
α−1UT, (7)

B = UΛUT : eigen-decomposition of B, (8)

and 1 is a n×1 vector of ones. We can use (4) to search for

A iteratively using gradient descent, conjugate gradient, or

any other method using the gradient information. Because

the performance surface has local optima, initialization of

A is important. We explore using random Gaussian matrix

or using the analytic solution obtained by LFDA [15] as

initialization; another option is to try multiple restarts and

choose the projection that minimizes the conditional entropy

Sα(L|Y ). A more sophisticated algorithm would improve

performance.
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III. NEURAL RECORDINGS

All animal procedures were approved by the SUNY Down-

state Medical Center IACUC and conformed to National

Institutes of Health guidelines.

A. Motor Cortex During Reaching Task

A female bonnet macaque was trained to perform an

8 target center-out reaching task [20]. After the monkey

became proficient at the task, a 96-channel micro-electrode

array was implanted in the motor cortex (M1). Recorded

firing rates from 185 units are binned into 100ms bins with

7 bins per reach trial, yielding a 1295-dimensional vector for

each trial. Here we use 178 successful reach trials from one

session.

B. Cortical Somatotopy of Rat Forepaw

Cortical LFPs were recorded during natural tactile stimu-

lation (light thwacks of forepaw digits and palm) of a female

Long-Evans rat under anesthesia. The rat was anesthetized

with isofluorane, and a 32-channel Michigan Probes elec-

trode array was inserted into the hand region of primary

somatosensory cortex (S1). The array had 8 contacts on 4

shanks. Another array was inserted into VPL region of the

thalamus, but the signals are not used here. The LFPs were

filtered with cutoffs (5Hz, 300Hz) and sampled at a rate of

1220.7Hz. The signals were digitally filtered using a 3rd

order Butterworth high-pass filter with cutoff of 4Hz and

notch filters at 60Hz and its first 5 harmonics.

The experimental procedure involved delivering 225 tactile

touches to the rat’s forepaw at 9 sites (4 digits and 5 sites

on the palm) using a motorized probe. For each location,

the probe was positioned 4mm above the surface of the skin

and momentarily pressed down for 150ms; this was repeated

25 times at random intervals. For analysis, 170ms (208 time

indexes) of the 32 channel LFP response was used; this yields

a 6656-dimensional vector for each touch.

IV. RESULTS

A. Motor Cortex During Reaching Task

For the reaching task experiment described in section III-

A, the dimension of the vectors is greater than the number

of trials. So PCA is performed on the collection of trials.

The first 130 components are kept, and the components are

normalized and decorrelated. The normalized components

are then used as inputs to the metric learning problem, (1),

(3), and (2), with an entropy order of α = 1.01 and σ = 5
√
2.

Gradient descent is run with a stepsize of 0.002 for 500

iterations.

When using all 178 trials, CEML is able to find a projec-

tion that separates the reach trials into discrete clusters, each

corresponding to a different target. A typical projection with

samples labeled by target is shown in Fig. 1. Also shown are

the target directions and corresponding target index numbers.

Clearly the projection preserves the relative arrangement of

the target placement.

Unfortunately, this level of separation corresponds to an

overfit 2–D linear projection. In order to test this, we

Fig. 1. (Left) Target orientation for the center-out reach task. (Right)
The neural responses for all the reach trials projected into a 2–D space and
colored by the reach target for each trial. The points for the same reach target
are well clustered, and clusters for neighboring targets appear as neighbors
in projected space: preserving the original target arrangement.
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Touch Site

Reach Target

Fig. 2. Nearest neighbor prediction performance for both datasets: 2/3
training and 1/3 testing. Metric-learning is able to increase the classification
rate by 10% and 20% versus the original space for the two datasets. Error
bars show ±1 standard deviation across 30 divisions of the datasets.

randomly partitioned the trials into training and testing sets;

2/3 of each target’s trials were used for training and the

remainder for testing. Metric learning was performed using

only the training set, and the test-set samples were classified

by their nearest neighbor (using Euclidean distance) in

the training set. To increase classification rate and avoid

overfitting, only the first 32 principal components were kept

(the same as the next dataset), σ was lowered to
√
2, and the

step size was increased to 0.1. We compared the initialization

of A with random entries versus using the LFDA projection.

The nearest-neighbor classification was also performed on

the original data and the PCA-preprocessed data. The mean

and standard deviation of the classification rate for 30 Monte

Carlo divisions of the dataset are shown in Fig. 2.

B. Cortical Somatotopy of Rat Forepaw

The same procedure described in the preceding section

was performed on the LFPs recorded from S1 during natural

touch of the forepaw, as in section III-B. Parameters were

the same for both the visualization and the classification: 32

PCA components, σ =
√
2, and step size of 0.1. A typical

projection with points labeled by the touch site is shown

in Fig. 3. The nearest-neighbor classification results across

30-run Monte Carlo test are shown in Fig. 2.
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Fig. 3. (Left) The rat forepaw labeled with anatomical abbreviation and
color coded. (Right) The neural responses for all the touch trials projected
into a 2–D space and colored by the touch site. Each data point is a
projection of the LFP response vector to a natural touch. A 2–D Gaussian
distribution was fitted to each sites’s points, and one standard deviation of
this distribution is shown as an ellipse. The relative arrangement of the
ellipses preserves the topology of the touch sites on the rat’s forepaw.

V. DISCUSSION

The arrangement of the projected points for each dataset is

strikingly similar to the underlying arrangements of the reach

targets and the touch sites. Again, CEML has no explicit

knowledge of the underlying similarity between conditions—

only the discrete labels. Thus, this similarity is present in the

neural responses and is preserved by the linear projection.

This is understandable assuming that similar conditions have

similar neural responses, such as the motor cortex where

a neuron’s firing rate smoothly covaries with movement

direction [1].

In both datasets the projected data are clearly separated

by condition. This means the data was also separable in the

high-dimensional space. Here the experiments were special

due to a natural 2–D representation for the different condi-

tions. In general, separation in 2–D may not be achieved,

and in those cases the classification performance would be

reduced. Metric learning can also be performed in a higher-

dimensional space to improve classification, but here we

pursued the hybrid objective such that the metric learning

also projects the data into a 2-dimensional space for easy

visualization.

VI. CONCLUSIONS

Here we are motivated by the question: would a linear pro-

jection be able to capture the similarity of neural responses

of individual trials to similar but distinct conditions? We

have found that a projection trained using only the condition

labels preserves the similarities in the environmental space

for both motor and somatosensory cortex data. To find the

linear projection, a conditional entropy optimization problem

is posed and solved using estimators based on the data

without requiring a probabalistic model. The conditional

entropy metric-learning approach seems apt for investigating

the relationships between neural responses.
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