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Abstract— This paper presents a Laguerre-Volterra 

methodology for identifying a plasticity learning rule from 

spiking neural data with four components:  1) By analyzing 

input-output spiking data, the effective contribution of an input 

on the output firing probability can be quantified with 

weighted Volterra kernels. 2) The weight of these Volterra 

kernels can be tracked over time using the stochastic state point 

processing filtering algorithm (SSPPF) 3) Plasticity system 

Volterra kernels can be estimated by treating the tracked 

change in weight over time as the plasticity system output and 

the spike timing data as the input. 4) Laguerre expansion of all 

Volterra kernels allows for minimization of open parameters 

during estimation steps. A single input spiking neuron with 

Spike-timing-dependent plasticity (STDP) and prolonged STDP 

induction is simulated.  Using the spiking data from this 

simulation, the amplitude of the STDP learning rule and the 

time course of the induction is accurately estimated. This 

framework can be applied to identify plasticity for more 

complicated plasticity paradigms and is applicable to in vivo 

data.      

I. INTRODUCTION 

The characterization of plasticity as a function of neural 
activity is an essential research front- it has profound effects 
on the computational nature of neural networks and could 
yield insights into learning and memory. Several 
experimental studies have investigated how the relative 
timing of pre and post-synaptic spiking influences synaptic 
weight.  In [1], it was observed that when the presynaptic 
spike was before the postsynaptic spike there was 
potentiation and when post was before pre, there was 
depression.  Furthermore, the shorter the interval between 
spike pairs, the larger the magnitude of the change in weight.  
This relationship has been termed spike-timing-dependent 
plasticity (STDP).    Many open questions remain about a 
generalizable activity-dependent plasticity rule because 
observed learning rule characteristics change between 
different neural regions and different experimental 
paradigms[2].   

In this paper, we propose a general methodology for 
learning rule identification that has many attractive potential 
features. First of all, it may be applied to in vivo spiking data 
between any two synaptically coupled neurons.  A wide 
range of potential shapes of weight change as a function of 
spike timing can be captured.  Additionally, the time course 
of plasticity induction can be identified. This framework can 
also be extended to consider nonlinear spike triplet and 
higher order interactions on synaptic weight.  
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The successful identification of an activity-dependent 
plasticity rule for a particular synapse is important in 
evaluating underlying plasticity mechanisms as well as in the 
implementation of a cognitive neural prosthesis. Previous 
research towards a cognitive prosthesis is focused on 
functionally replacing a neural region by replicating its input 
output spiking system characteristics [3].  There have been 
promising animal experimental results with a static system 
that indicate that such a cognitive prosthesis can instantiate 
functionality of a neural region in a learned memory task [4]. 
Implementation of identified plasticity rules could allow the 
dynamic nature of a neural region to be captured by the 
cognitive prosthesis.  

The framework proposed in this paper is an extension of 
the nonlinear input output modeling put forth in the cognitive 
prosthetic research effort [5],[6]. In this previous work, 
output firing probability is affected by the precise timing of 
input and output spiking events.  These effects are captured 
in Volterra kernels, which are capable of capturing nonlinear 
spiking interactions. These Volterra kernels are expanded 
with Laguerre basis functions in order to minimize the 
amount of open parameters and to ease estimation[7]. A 
methodology for tracking changes in these Volterra kernels 
over time has also been investigated in [8] by using SSPPF 
[9]. 

Plasticity learning rules can be captured in a similar 
manner.  The tracked change in weight over time can be 
considered the plasticity system output and all spike timings 
can be considered as the system inputs.  Volterra kernels can 
then be estimated that characterize the effect of spike timing 
on the change of weight.  Laguerre expansion of these 
plasticity Volterra kernels is again used to decrease the open 
parameters and assist with estimation.  The plasticity Volterra 
kernels can separately capture the effect of relative spike 
timing on the amplitude of the change in weight from the 
plasticity induction time course. 

In this paper, we will present a simple example of how to 
extract a learning rule from spiking neural data with this 
methodology.  We will simulate a single input spiking neuron 
with STDP and prolonged plasticity induction.  With only the 
spiking data, we are able to accurately reconstruct the 
Volterra kernels that describe the STDP amplitude and 
induction accurately. This method is generalizable to more 
nuanced STDP kernel shapes and higher level interactions 
between spikes.  

II. METHODS 

A. Model Structure – Spiking Neuron System 

A single input single output (SISO) spiking neuron was 

simulated as outlined in Fig. 1. An output spike y is 

generated every time w, (the subthreshold membrane 
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potential) passes the threshold θ. The subthreshold 

membrane potential, w, is calculated by summing u (the 

synaptic potential), a (the after-potential), and n (Gaussian 

white noise).  Every spike from x increases the synaptic 

potential, u, with the time course and amplitude of the 

feedforward kernel K1.  Every spike from the output spike 

train y decreases the after potential, a, according to the 

feedback kernel H.  Refer to [5], [6] for more details about 

this modeling framework. 

 
The amplitude of    is modulated over time by the 

synaptic weight (g) and has the shape according to the 

normalized feedforward kernel    , (    is defined to have a 

maximum amplitude of one). 

 
        (1) 

During simulations the input spike train will be a generated 

5Hz Poisson process.  Simulations will be iterative with a 

1ms time step. 

B. STDP Model Strucure  

The change in synaptic weight (  ), is a function of the 
input and output spike times (x and y) as outlined in Fig. 1. 
At every time step, the synaptic weight equals the previous 
synaptic weight plus   . The premise of the implemented 
rule is based on STDP as discussed in [10].  If x spikes before 
y, g will increase and if y spikes before x, g will decrease.   

The amplitude of the weight change,   , depends on the 
interval of time between x and y spike pairs.  The STDP 
amplitude kernels (     and     ) implemented in the model 

have time constants and relative amplitudes from [10] and 
can be seen in Fig 2.      is the kernel that describes the 

amplitude of spike pairs when x is before y and      is for y 

before x.   

In the model, the change in synaptic weight has a 
prolonged induction time of ~30 seconds which is the 
approximate time scale that it takes for long-term potentiation 
induction in experimental studies[11].  See Fig 2 for the    
induction kernel (  ) used in the model.   

  

The change in weight,   , as a function of time can be 
written in the Volterra kernel framework as, 

                                       

    

    

  

    

 

                                                   

    

    

  

    

 

 

(2) 

 

where x is the input spike train, y is the output spike train, τx 

and τy are the time history intervals evaluated for x and y 

spiking, and Mψ is the memory of Kψ. The term     
   (    ) in (2) equals one when the τx and τy 

combinations correspond to x and y spiking pairs in memory 

Mψ and zero otherwise. 

C. Tracking Weight Change 

The input kernel,   , and the feedback kernel, H, can be 

tracked over time from x and y spike timing data alone by 

tracking their Laguerre coefficients using SSPPF [8] and [9].  

The tracked input kernel,    , can be represented as, 

 
          (3) 

 
Figure 2. ∆g STDP Amplitude and Induction Kernels. 

 
Figure 1. A. SISO spiking neuron model structure with K1 weight 

modulated by STDP with prolonged induction. B. Conceptual example 

of how x and y spike pairs affect weight change ∆g over time with 
respect to order of x and y spikes as well as interspike interval. The 

weight, g, is the cumulative sum of ∆g.  

 
Figure 3. Visualization of τ variables at time t used in (2) 
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The tracked weight,   , at any point in time can be 

calculated as the amplitude of    , because the amplitude of 

    is equal to 1. The tracked weight change,    , is essential 
to the estimation of the learning rule and is calculated as, 

D. STDP Estimation 

 In order to reduce the number of estimated parameters 

for the STDP kernels, each kernel can be expanded with 

Laguerre basis functions,   

              

 

   

 

 

(5) 

 

where       is the Laguerre basis function of order j,   is 

the corresponding Laguerre coefficient, and L is the total 

order of basis functions used. Because of the linear nature of 

the Volterra kernel and Laguerre expansion,    can also be 

represented as  
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Where Vxy represents the x before y spiking data filtered 

through the Laguerre basis functions, and Vyx represents y 

before x as defined as, 
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The coefficients     and    , are defined as 
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In order to reconstruct the learning rule, the     and     

coefficients must be estimated which is a total of      
1(  +1) coefficients.  The coefficients     and     can be 

estimated as      and      by performing linear regression 

using (6) with the estimated     value from (4) and the 

filtered x and y spiking data,     and     according to (7) 

and (8).  The sets of Laguerre basis functions, bAxy, bAyx, and 

bψ have separate poles in this simulation. 

In order to reconstruct the estimated      ,      , and the 

    kernels,      ,      , and     estimates must be obtained 

from the estimated      and      values. The estimated 

coefficients may be normalized without loss of accuracy by 
setting: 

     
      (11) 

With substitution of (11) into (9) and (10), the remaining 

coefficients can be obtained from the following equations: 
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E. Ensuring Simulation Stability 

The modeled system is prone to instability.  As g 

increases, x spikes will increasingly cause y spikes which 

will cause g to increase even faster.  Similarly, as g 

decreases, x spikes will become less causal for y spikes, 

which will cause g to decrease even faster.  To prevent this 

system instability, when g crosses above or below specified 

thresholds, the x spiking shifts from a random Poisson train 

to patterned inputs.  When g crosses below a threshold, x 

spiking increases to 50Hz bursts which causes y spiking and 

an increase in the g value.  When g crosses above a certain 

threshold, x spiking will only occur within 10ms after y 

spikes, which causes a decrease in the g value.  Thus, 

stability is achieved without altering the model structure. 

III. RESULTS 

The fluctuation of g during a 200s simulation can be seen 
in Fig 4A.  Using the spiking data,     was accurately 
estimated throughout the simulation, see Fig 4B.  Using the 
spiking data and the estimated    , all three plasticity kernels 
were able to be estimated accurately, see Fig 5. 

 

IV. DISCUSSION 

The simulation and estimation methodology presented 
demonstrates the ability to identify a STDP learning rule 
using only spiking neural data. 

One simplification of the learning rule identification 
presented is that the poles of the different Laguerre basis 
functions of the simulation were known during estimation.  
Laguerre pole estimation can be incorporated in the future 
by using methodology presented in [12].   

                     (4) 

 
 

Figure 4. A. Weight fluctuation during a 200s simulation. B. 

Estimated     closely resembles real ∆g.  
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A limitation of the simulation example presented is that 
the system was prone to instability.  In the future, weight 
saturation could be added to the model by adding a 
sigmoidal link function to the weight.  This would limit 
system instability and model physiological processes that 
limit unbounded changes in weight.  System identification 
could still be applied by using a generalized linear model 
(GLM) framework.   

The simulated STDP amplitude kernels in this 
simulation had a shape that was based on [10], however the 
shape of this relationship reported in experiments varies 
between neural regions and experimental setup.  This 
STDP shape has immense functional implications for 
learning in neural systems as well as understanding 
underlying mechanisms.  By estimating this relationship 
with Volterra kernels and Laguerre basis functions, a wide 
variety of potential estimated shapes are possible with a 
small number of open parameters.  Also, a separate 
relationship can be estimated from any coupled spiking 
pair of neurons.  The ability to estimate the plasticity 
induction time course in this model is another useful tool in 
increasing the fidelity of the modeled system and 
investigating underlying plasticity mechanisms. 

The model presented is single-input single-output 
(SISO), however this framework could easily be extended 
to multiple-input single-output (MISO) by adding 
additional feedforward kernels.  A multiple-input multiple-
output (MIMO) model could be created by combining 
several MISO models. Furthermore, the plasticity model 
could be extended from spike pair interactions to triplets or 
higher level interactions by using a 2nd order or greater 
Volterra kernel for determining the amplitude of the 
change in weight.  Also, in the example presented, there 
was one weight parameter for the first order feedforward 
kernel.  If multiple weight parameters were tracked for the 
feedforward kernel, the spiking-activity dependent change 
in shape of the feedforward kernel could be analyzed.    

In future experiments, the presented plasticity 
identification framework could be applied to in vivo data in 
order to characterize plasticity in different neural regions. 
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Figure 5. Estimated amplitude kernels (      and        and induction 

kernel (   ) closely resemble real kernels (KAxy, KAyx, and Kψ). 
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