
  

 

Abstract— Extracardiac factors of heart rate variability have 

commonly been investigated using linear and nonlinear methods 

for a long time. Recently, intracardiac mechanisms on an 

electrophysiological basis have been found to be also important. 

This work is focused on the evaluation of complex measures of 

temporal signals gained with microelectrode measurements of 

embryonic chick heart aggregates. Septic conditions were 

mimicked in vitro by lipopolysaccharide (LPS) administration in 

order to investigate the influence on beat to beat variability. 

Surrogate data analysis revealed high statistical significances 

for normalized complexity measures. 

I. INTRODUCTION 

Heart rate variability (HRV) has extensively been studied 
for cardiovascular diseases and is meanwhile an important 
physiological parameter with high prognostic impact. The 
source of HRV can be autonomous or a baroreflex feedback 
loop, but recent reports have uncovered that intracardiac 
processes seem to be very important, too [1, 2]. In line with 
this it has been recently shown, that lipopolysaccharide 
(LPS), a major component of the outer wall of Gram-
negative bacteria, impairs the pacemaker current If, which in 
turn potentially contributes to HRV reduction under septic 
conditions [3]. If, a determinant of diastolic depolarisation 
and pacing rate, is mainly encoded by the hyperpolarisation 
activated cyclic nucleotide gated HCN4 isoform in 
mammalian sinoatrial node [4]. Since beat to beat variability 
(BBV) of the cardiac tissue itself partly reflects HRV, it 
seems to be adequate to investigate BBV using methods 
commonly applied for HRV analysis. In order to investigate 
the effect of LPS on BBV we measured spontaneous action 
potentials in cultured embryonic chick heart cell aggregates, 
expressing HCN4 encoded pacemaker channels [5] and 
providing well defined biological conditions without any 
extrinsic influences. 

Theoretical investigations of HRV mostly assume 
fractional Brownian motion (fBm) as the underlying process, 
but care has to be taken in order to separate the temporal 
signals from fractional Gaussian noise (fGn) [6]. Power 
spectral densities can be calculated and the slope of a double 
logarithmic plot enables to determine the Hurst coefficient. 
Other methods investigate long range correlations directly in 
the time domain. For instance, nonlinear methods such as 
entropy measures, particularly approximate entropy, sample 
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entropy as well as the Higuchi dimension are well 
established. Although these time domain methods cannot 
distinguish between distinct types of signals (fBm or fGn), 
they can be used to investigate complexity or long range 
correlations, especially for short data series. Normalization 
of entropy and Higuchi dimension measures turned out to 
increase statistical significances, which were tested by 
applying a thorough surrogate data evaluation. The 
hypotheses of this report are that LPS reduces the beat to 
beat variability in embryonic chick cell aggregates and that 
entropy and fractal measures are able to discriminate these 
biologically motivated conditions. The pacemaker current If 
may be involved in the LPS effect of reducing beat to beat 
variability. 

II. METHODS 

A. Electrophysiological Measurements 

Chick ventricular myocytes were isolated from 7-day old 
embryos by techniques previously described [7]. 
Spontaneous action potentials were recorded by conventional 
microelectrode technique [8]. Pacemaker current If was 
measured with the patch-clamp technique in the whole-cell 
voltage -clamp mode [3]. 

B. Power Spectral Analysis 

The power spectrum was evaluated according to Eke et 
al. [6]. The discrete signals X(i) with length N were 
preprocessed by parabolic windowing using following 
weighting factors 
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and bridge detrending by subtracting the line connecting 
the first and the last point of the data series. Then, discrete 
Fourier transformation (DFT) was performed yielding the 
power spectral density P( f ). A double logarithm plot of the 
spectrum was created and a linear regression line was 
calculated. Assuming a power law 
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the slope  (spectral index) was calculated. Two distinct 

regions of  can be distinguished: 
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Beat to Beat Variability of Embryonic Chick Heart Cells under 

Septic Conditions: Application and Evaluation of Entropy as well as 

Fractal Measures* 

Helmut Ahammer, Susanne Scherübel, Robert Arnold, Klaus Zorn-Pauly, and Brigitte Pelzmann 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 5566



  

 31:  fBm  

Fractional Gaussian noise fGn can be negatively as well 
as positively correlated, whereas fractional Brownian motion 
fBm can only be positively correlated. 

The special case  = 0 indicates Gaussian noise without 

any correlation and  = 2 indicates Brownian motion 

(Random walk). Actually, the slope  was not calculated 
over the whole frequency spectrum. Only the power spectral 
values of the lower half of the spectrum (depending on the 
actual signal lengths) were included in order to avoid 
influences of high frequency noise components. 

C. Approximate Entropy ApEn and Sample Entropy 

SampEn 

ApEn was introduced by Pincus [9] in order to estimate 
the information content of a signal. First, with a fixed integer 
m = 2, (N-m+1) sequences are created according to 
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Next, distances in between the data series are calculated 
with 
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For each i, j   1,1  mNji  the normalized sum of 

distances smaller than a predefined maximal distance r = 
0.15SD, where SD is the standard deviation of the signal, is 
calculated according to 
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For each m the following sum can be calculated 
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Then, ApEn is defined as 
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ApEn is sensitive to the data point number and to the 
distance r, which prevents comparisons of ApEn values of 
different signal lengths. Eliminating these drawbacks, 
Richman and Moorman [10] introduced the sample entropy 
statistics. Contrary to ApEn, SampEn does not count self 
matches i = j and takes the logarithm in the very last step. 

Accordingly, (5)-(7) are valid for SampEn without any 
changes. Even (8) is still valid, only i = j is omitted. Instead 
of (9) the sums are calculated without the logarithm for m 
and m + 1 
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Finally, (10) is replaced by 
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D. Higuchi Dimension DH 

Without phase space constructions, Higuchi [11] 
proposed a method to calculate the fractal dimension of the 
temporal signal itself. With an initial data point m = 1,2,…,d 
and a delay interval d = 1,2,…,30 following data point series 
are constructed: 
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Next, the individual lengths of these series are calculated 
with 
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where    denotes the floor function. For each d, the 

mean length is determined by 
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DH was calculated with the slope of a regression line of 
the linear part of a double logarithmic plot of L(d) and d. 

 

E. Surrogate Data 

In order to statistically test the gained values for DH, 

ApEn, SampEn and , surrogate data was generated. Three 
methods were used. (i) SurrSH: shuffled surrogates, created 
by randomly shuffling the data points, 
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Figure 1.  Effect of 10 µg/ml LPS on embryonic chick ventricular myocyte 

excitability. A: Spontaneous action potentials, the regions between the 

arrows indicate diastolic depolarisation phase. B: Pacemaker current If in 

control (left panel) and after LPS administration (right panel), current traces 

in blue mark the activation voltage. 

 

(ii) SurrG: Gaussian surrogates with same mean and variance 
as the original signal, and (iii) SurrRP: randomized phase 
surrogates with same power spectrum as the signal but 
randomly shuffled phases. For every signal and every 
surrogate generation method, 100 surrogates were generated. 
Values for surrogate data are denoted by ApEn

SurrSH
, 

ApEn
SurrG

,…, DH
SurrRP

,…. 

III. RESULTS 

Fig.1A illustrates spontaneous action potentials recorded 
in a small cluster of embryonic chick ventricular myocytes 
under control conditions (black line) and after administration 
of 10 µg/ml LPS (gray line). Under LPS conditions diastolic 
depolarisation phase (displayed by the region between 
arrows) is prolonged resulting in a reduction of beating 
frequency. Investigation of the pacemaker current If shows 
that LPS prominently shifts current activation to more 
negative membrane potentials (from -80 mV to -110 mV, 
Fig.1B). This in turn explains well the slowing of diastolic 
depolarisation phase and hence reduction of beating 
frequency. 

DH, ApEn, SampEn and  were calculated for control 
signals as well as for signals measured under LPS conditions. 
First, the influence of signal lengths was determined, because 
experimentally it was not possible to gain data with constant 
signal lengths. Theoretically, Gaussian noise signals with 

infinite data length should yield following values:  = 0, 
ApEn = 2.5, SampEn = 2.5 and DH = 2. Table I shows actual 
values for Gaussian surrogates of some recorded signals. 

TABLE I.  SIGNAL LENGTH DEPENDENCY 

Signal 

length 

Mean of Gaussian surrogates (n = 100) 

 SurrG
 ApEn

 SurrG
 SampEn

 SurrG
 DH

 SurrG
 

513 0.0135 1.12 2.47 2.02 

748 0.0224 1.38 2.48 2.01 

1123 0.020 1.56 2.48 2.01 

1981 0.0033 1.84 2.47 2.00 

2575 -0.0303 1.96 2.47 2.00 

 

The length dependency of ApEn is quite obvious and in 

accordance to the literature [10]. , SampEn and DH showed 
practically only a negligible length dependency. Data for 
shuffled surrogates is not shown, because the results were 
quite identical to the Gaussian surrogates (x

SurrSH
 ≈ x

SurrG
). 

A detailed analysis of the values for the spectral index  
was performed. The type of signal (fGn or fBm) may be 
determined with (3) and (4) but the experimental data 

showed very inconsistent results for . Control and LPS 
signals were negatively as well as positively correlated, in 
some cases they were fGn and in other cases fGm. The 
reason for this inconsistency seems to be the limited signal 
length in accordance to Eke et al. [6]. Because of these 

conceptual problems of  as well as of ApEn, further 
investigations concentrated on SampEn and DH. 

Except one phase randomized surrogate data set, all 
surrogates for SampEn and Dh were normally distributed 

(Kolmogorov-Smirnov-test,  = 0.05, n=100). Furthermore, 
except for one case and particularly for the phase 
randomized surrogates, each measured time signal was 
significantly not equal to the corresponding surrogates (One 

sample Student’s t-test,  = 0.01, n=100). Calculated values 
for SampEn can be seen in Fig.2A. The lower values for the 
LPS signals are clearly visible, indicating a loss of 
complexity. In order to see differences to the corresponding 
phase randomized surrogate data, Fig.2B shows normalized 
values SampEn/SampEn

SurrRP
. A value of about 1.5 for the 

control signals indicates that the entropy or complexity is 
about 50% higher than the corresponding phase randomized 
surrogates. For the LPS signals the values were slightly 
below 1. This indicates that complexity is reduced to values 
slightly lower than the corresponding phase randomized 
signals. 

    

Figure 2.  Sample entropy for control and LPS signals. A: Sample entropy, 

B: Sample entropy normalized to sample entropy of corresponding random 

phase surrogates. 

5568



  

 

    

Figure 3.  Higuchi dimension for control and LPS signals. * p ≤ 0.05 of 

Kruskal-Wallis-test. A: Higuchi dimension. B: Higuchi dimension 

normalized to Higuchi dimension of corresponding random phase 

surrogates. 

 

Similarly to SampEn, the Higuchi dimension DH (Fig.3A) 
and a normalized Higuchi dimension DH/DH

SurrRP
 (Fig.3B) 

were calculated. Now, LPS signals show statically significant 

lower values (Kruskal-Wallis-test,  = 0.05, n = 4). The 
normalized values confirm this result. The control signals 
show an about 15% higher value than the corresponding 
phase randomized surrogate signals. For the LPS signals the 
percentages are about 5% and therefore they are still 
different from the corresponding phase randomized surrogate 
signals. 

The differences between the control group and the LPS 
group are consistent and clearly evident for SampEn as well 
as for DH. Furthermore, the normalized values show higher 
significances. 

 

IV. CONCLUSION 

Intrinsic heart tissues properties may be one important 

factor for HRV in vivo. This presentation gives evidence that 

this hypothesis cannot be rejected. BBV of embryonic chick 

heart aggregates was quite lowered under septic conditions 

and therefore confirms prior reports using rat cells [1]. 

Moreover, the results show an LPS induced impairment of 

pacemaker current in embryonic chick heart cells which may 

underlie this described reduction of BBV. Since If of 

embryonic chick ventricular myocytes is encoded by the 

HCN4 isoform, which is also the major isoform in 

mammalian sinus node, our results may contribute to a better 

understanding of LPS induced reduction of heart rate 

variability observed in humans. 

Whereas power spectral analysis as well as approximate 
entropy did not yield reliable results, sample entropy as well 
as the Higuchi dimension turned out to be robust and 
statistically significant, despite the low number of data points 
and samples. Surrogate data analysis emphasized these 
findings. Of all parameters tested, Higuchi dimension 
normalized to the randomized phase surrogate value (Fig.3B) 
turned out to be the best parameter in order to describe BBV 
quantitatively. 
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