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Abstract— Cardiac Autonomic Neuropathy (CAN) is a disease
that involves nerve damage leading to abnormal control of heart
rate. CAN affects the correct operation of the heart and in
turn leads to associated arrhythmias and heart attack. An open
question is to what extent this condition is detectable by the
measurement of Heart Rate Variability (HRV). An even more
desirable option is to detect CAN in its early, preclinical stage,
to improve treatment and outcomes. In previous work we have
shown a difference in the Renyi spectrum between participants
identified with well-defined CAN and controls. In this work we
applied the multi-scale Renyi entropy for identification of early
CAN in diabetes patients. Results suggest that Renyi entropy
derived from a 20 minute, Lead-II ECG recording, forms a
useful contribution to the detection of CAN even in the early
stages of the disease. The positive α parameters (1 ≤ α ≤ 5)
associated with the Renyi distribution indicated a significant
difference (p < 0.00004) between controls and early CAN as
well as definite CAN. This is a significant achievement given the
simple nature of the information collected, and raises prospects
of a simple screening test and improved outcomes of patients.

I. INTRODUCTION
The Renyi entropy has been shown to be useful in a

variety of applications including chaotic dynamical systems,
which characterise heart rate (HR) changes observed over
time. Heart rate and its inversely related property heart rate
variability represents a non-stationary non-linear system [1].
In previous work [2] we have shown that entropy measures
based on Heart Rate Variability (HRV) allow people with
Cardiac Autonomic Neuropathy (CAN) to be distinguished
from controls with good sensitivity and specificity. Detection
of CAN is difficult as current tests are invasive and labour
intensive, and many people at risk of this disease are not
routinely screened. Detection of CAN at an earlier stage,
before the disease is well defined, would greatly assist in
management of this disease. The possibility of automatic
detection of early CAN from a simple measure such as
HRV would be a huge leap forward in terms of detection
and most importantly, in terms of improving the health
outlook and quality of life for those people living with CAN.
For the detection of well defined CAN, the Renyi entropy
provides a high level of accuracy and should therefore be
considered as a neuroendocrine test for CAN. In this work
we have extended this finding to examine the possible role
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of Renyi entropy in detection of early CAN. Results based
on actual clinical data suggest that it is possible to detect
early CAN from HRV data, but requires use of a multi-
spectral Renyi entropy and some care in the selection of
the spectral parameter α. This result holds great promise for
early detection and the benefits that flow from that in terms
of better outlook and quality of life for patients with CAN.

A. Heart Rate Variability (HRV)

A standard ECG signal is shown in Fig. 1. This type
of signal has been extensively studied and the diagnostic
value of the different features is well established. ECG
features are referred to using letters. The large spike is
referred to as the QRS complex, with R being the peak of
the wave or fiducial point, while the smaller peak to the
left is the P wave and to the right of the QRS is the T
wave. The natural rhythm of the human heart is subject
to variation that is believed to indicate the health of the
cardiovascular system. HRV is commonly used in assessing
the functioning of cardiac autonomic regulation [3]. The
autonomic nervous system (ANS) regulates heart rate (HR)
through sympathetic and parasympathetic branches. Roughly
speaking, sympathetic activity increases HR and decreases
HRV, whereas parasympathetic activity decreases HR and
increases HRV [4].The heart rate (HR) is expressed as the
number of beats per minute. The HR varies considerably
between individuals, but a typical adult heart rate is 60-80
beats per minute.

Fig. 1. Normal ECG recording showing RR interval.

The ECG signal is degraded by the presence of noise, so
that the most reliable feature that can be obtained from low
quality recordings (and therefore the most easily obtained
measurement) is the interval between successive R peaks,
known as the RR interval (inverse of heart rate). RR intervals
are obtained from the recorded ECG and the RR variation
can be subjected to further analysis through a variety of
algorithms in order to yield variables with good discriminant
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power, based on the difference of RR interval variability with
respect to the total recording interval. For the purposes of
further analysis, the RR interval is expressed as the time
between beats (measured in milliseconds), and this can be
plotted against time to produce the graph shown in Fig. 2.
Fig. 2 illustrates the natural variation of RR intervals over
a 20 minute recording that is indicative of a healthy cardiac
system, as the heart rate is continuously varied to adapt to
current needs of oxygenation and perfusion. It is the absence
of such a variation that can indicate cardiac disease.

Fig. 2. Normal R-R interval graph.

HRV provides information only on the changes in the
interval length between heart beats over the length of the
recording. It is relatively non-invasive and easy to obtain
from an ECG recording. The analysis of HRV has been
the subject of extensive work using time and frequency
based methods [5]. These methods have either focused on
the magnitude of RR interval fluctuations around its mean,
or on the magnitude of fluctuations in given frequency
bands. However more recent analysis methods have shown an
increased sensitivity for identifying risk of future morbidity
and mortality in diverse patient groups. For example, an
estimate of HRV using the standard deviation of RR intervals
found that this is higher in well-functioning hearts but can
be decreased in coronary artery disease, congestive heart
failure and diabetic neuropathy [6]. Although HRV is useful
in disease detection, when only a simple derived measure
is used, such as the standard deviation of RR intervals, it
is no better than the average heart rate and in fact contains
less information for risk prediction after acute myocardial
infarction [7]. This indicates that more advanced measures
of HRV should be explored. Some of the measures derived
from the RR interval fluctuations and used in this work are
now discussed.

HRV is reduced in diabetes mellitus (DM) patients, sug-
gesting dysfunction of cardiac autonomic regulation. Early
assessment of cardiac autonomic neuropathy (CAN) and
intervention are important for risk stratification and early
treatment in preventing sudden cardiac death in diabetic
patients. While HRV is recognised to carry early diagnostic
value regarding CAN, reduction of HRV has been observed

also in patients without evidence of CAN [8]. For the
assessment of CAN using HRV analysis, standard time and
frequency-domain methods as well as different non-linear
methods have been proposed [9], [10].

A promising non-linear method is the Renyi entropy,
which is calculated by considering the probability of se-
quences of RR values occurring in the HRV data. Renyi
entropy has shown significant differentiation of cardiovas-
cular disease, along with several other measures. In previous
work, we have shown that Renyi entropy can distinguish
CAN from controls [2]. In this work we show that it is useful
in distinguishing CAN even in the early stages of the disease.

II. THE MULTI-SCALE RENYI ENTROPY

The multi-scale Renyi entropy was introduced and applied
to physiologic time series by [11]. Renyi entropy Hα is a
generalisation of the Shannon entropy to include measures
of different orders:

Hα(X) =
1

1− α
log2

(
n∑
i=1

pαi

)
(1)

In terms of deriving a measure from a recording of RR
intervals, X is the vector of RR intervals, pi is the probability
of each sub-sequence of X and α is the order of the
entropy measure. The probability of each sub-sequence can
be estimated by its similarity with all other sequences of the
same length π [12]. Each sub-sequence is regarded as a point
in a π-dimensional space, and its probability is estimated
using a Parzen window density estimation with a Gaussian
kernel centred on each such point [13]. Then pi is given by
this density function:

pi =

n∑
j=0

exp

(
−dist2ij
2σ2

)
(2)

where σ is a parameter controlling the width of the density
function and dist() is a distance measure:

distij =

π∑
k=0

(xi+k − xj+k)
2 (3)

Here, xi+k is one RR sample out of sequence of length
π, the pattern length over which comparison occurs. Renyi
entropy may be calculated for a range of α, providing a
spectrum of measures. Setting α = 0 yields H0 which gives
simply log2n. Setting α = 1 yields a special case of the
Renyi entropy H1, equivalent to the Shannon entropy. Setting
α = 2 yields H2 or the Collision entropy.

III. METHODOLOGY

This work attempted the identification of early CAN in
patients reviewed at the Charles Sturt Diabetes Complica-
tions Screening Group (DiScRi), Australia [14]. Participants
attending the screening clinic had their lead II ECG recorded
for 20 minutes and RR intervals analysed. The subjects
were comparable for age, gender, and heart rate, and the
same physical conditions were used for each subject. ECGs
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Fig. 3. Graph of the Renyi entropy for different value of the exponents α.

were recorded using a Maclab Pro with Chart 5 software
(ADInstruments). Initial screening of participants led to the
exclusion of those with severe heart disease, presence of a
pacemaker, kidney disease or polypharmacy including multi-
ple anti-arrhythmic medication. The study was approved by
the Charles Sturt University Human Ethics Committee and
written informed consent was obtained from all participants.

This study used the Ewing battery of tests to identify
the presence of early CAN [15], [9]. 11 participants with
definite CAN, 67 participants with early CAN, and 71
without CAN attending the screening clinic had their beat-to-
beat fluctuations analysed using the Renyi entropy described
above. From the 20-minute recording, a 15 minute segment
was taken from the middle of the original recording to
remove start-up artefacts and movement artefacts at the end
of the recording. Only the RR intervals were retained, and no
other information from the ECG were utilised in this study.
The baseline was removed by subtracting the mean value of
the RR interval from the RR data. The Renyi entropy was
calculated for exponents −5 < α < +5. For each class of
patients, the mean Renyi entropy was calculated for each
value of α. Confidence intervals were also calculated for
each class to allow comparison of the mean value of each
class.

IV. RESULTS

The mean value of Renyi entropy for each of the three
groups of patients in the study is shown in Fig. 3. Only the
mean values of each group are shown, but it can be seen
that they appear distinct, especially in the region of negative
α. All three groups have Renyi entropy close to 1 for all
values of α. All patients have higher values for negative α
but lower values for positive α. However this graph does
not show the range of variation, and that is better explored
through statistical comparison.

To understand better which values of the Renyi spectrum
are the most successful in separating the various groups, we
performed t-tests comparing the Renyi entropy for Normal
and Definite groups, and for Normal and Early groups.
Results are shown separately for the negative and positive
parts of the Renyi spectrum because of the large difference

Fig. 4. Graph of p values obtained from t-tests performed on the negative
part of the Renyi spectrum for the Normal and the Definite group.

Fig. 5. Graph of p values obtained from t-tests performed on the positive
part of the Renyi spectrum for the Normal and the Definite group.

in scale, and results are not shown for H0 as none of these
were significant even at the 0.05 level.

Fig. 4 shows p-values from the t-tests for the negative part
of the Renyi spectrum (α < 0) comparing the Normal and
the Definite group. All the values for Renyi entropy shown
are below 0.0025, suggesting that these groups can be easily
separated using these measures, with a confidence level of
less than 0.0025. The entropy H−1 appears to provide the
best separation, with a p value of 1.318E − 05, suggesting
that H−1 is a better measure than the others to distinguish
Normal and the Definite groups. Results are shown for the
positive part of the Renyi spectrum in Fig. 5. These values
are all below 6E − 9, indicating a much more promising
set of measures than those for α < 0. The Shannon entropy
H1 appears least able to separate the groups compared to
the other measures in the positive part of the spectrum.
The highest H5 provided the lowest p value, suggesting that
higher values of α are superior for the detection of definite
CAN from controls. These results are consistent with our
previous findings.

Turning now to the comparison of the Normal and Early
groups, Fig. 6 shows the p-values from the t-tests for the
negative part of the Renyi spectrum (α < 0). These values
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Fig. 6. Graph of p values obtained from t-tests performed on the negative
part of the Renyi spectrum for the Normal and the Early group.

Fig. 7. Graph of p values obtained from t-tests performed on the positive
part of the Renyi spectrum for the Normal and the Early group.

are higher than those for the Normal versus Definite groups,
but are nevertheless all below 0.05, indicating a significant
result at least at the 95% level. As noted in the previous
discussion, the entropy H−1 appears to provide the best
separation, with a p value of 0.0055, suggesting that H−1 is
superior as a measure to distinguish the Normal and Early
groups. Results are shown for the positive part of the Renyi
spectrum in Fig. 7. These values are all below 4E − 5,
which represents a high degree of confidence in the ability of
these measures to discriminate these groups. Once again, the
Shannon entropy H1 is the least significant out of the positive
part of the spectrum, and higher order measures appear to
perform better, with H5 providing a p value of 1.426E−05.

V. CONCLUSIONS

Renyi entropy has the potential to distinguish not only
between normal patients and those with definite CAN, but
also between normal patients and early CAN, using measures
based on HRV alone. Definite CAN was separated from
controls with higher confidence (p = 3.8E − 10 for H5)
than the separation between early CAN and controls (p =

1.426E−05 for H5). The positive part of the Renyi spectrum
(α > 1) provided better separation in all cases, while H0 was
of no use as a discriminant measure. Out of the Renyi entropy
measures in the positive part of the spectrum, the special
case Shannon entropy (H1) performed the most poorly and
higher order Renyi entropy provided a superior result. The
multi-spectrum Renyi entropy is able to provide a range of
measures that can be pursued to easily discriminate between
people with early CAN and controls. This is an important
finding and gives hope of a simple and relatively non-invasive
test for early CAN with all the benefits that implies for better
prognosis and quality of life for those people developing this
disease.
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