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Abstract— Heart rate variability (HRV) is reduced in dia-
betes mellitus (DM) patients, suggesting dysfunction of cardiac
autonomic regulation which has been associated with increased
risk for pathological cardiac events. In this paper, we examined
changes in HRV complexity in association to blood glucose
level (BGL) and duration of diabetes. Resting HRV and BGL
measurements of 32 healthy controls and 54 type 2 DM (T2DM)
patients were analyzed. HRV complexity was assessed using
Shannon entropy, sample entropy (SampEn), multiscale entropy
(MSE), and multiscale Renyi entropy.

HRV complexity increased with hyperglycemia indicated by
increases in Shannon entropy and MSE and decreases in Renyi
entropy for negative orders. Diabetes duration was strongly
associated with Renyi entropy which increased for positive
orders and decreased for negative orders as a function of disease
duration. Shannon entropy, SampEn and MSE did not correlate
with disease duration.

I. INTRODUCTION

Heart rate variability (HRV) is commonly used in assess-
ing the functioning of cardiac autonomic regulation. The
autonomic nervous system (ANS) regulates heart rate (HR)
through sympathetic and parasympathetic branches. Roughly
speaking, sympathetic activity increases HR and decreases
HRV, whereas parasympathetic activity decreases HR and
increases HRV [1]. The low frequency (LF, ranging from
0.04-0.15 Hz) component of HRV is influenced by both
sympathetic and parasympathetic nervous activities, where
the high frequency (HF, 0.15-0.4 Hz) component originates
solely from parasympathetic nervous activity [1], [2].

HRV is reduced in diabetes mellitus (DM) patients, sug-
gesting dysfunction of cardiac autonomic regulation. Early
assessment of cardiac autonomic neuropathy (CAN) and
intervention are important for risk stratification and early
treatment in preventing sudden cardiac death in diabetic
patients. While HRV is recognized to carry early diagnostic
value regarding CAN, reduction of HRV has been observed
also in patients without clinical evidence of CAN [2], [3]. For
the assessment of CAN using HRV analysis, standard time
and frequency-domain methods as well as different nonlinear
methods have been proposed [4], [5], [6], [7], [8], [9].

The association between blood glucose level (BGL) and
HRV parameters in diabetes have been examined at least
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in [10], [6], [11], [12], [13]. In [10], the HF component of
HRV was reduced in subjects with DM. However, in [11],
reduction of the LF component of HRV was observed in
diabetics as well as in subjects with impaired fasting BGL.
In [12], the LF/HF ratio was shown to be increased during
hyperglycaemia in controls and diabetics without CAN. In
our previous study focusing on standard time and frequency-
domain measures of HRV, a negative correlation between
BGL and mean RR interval and decrease in HRV were
observed in hyperglycemia [13].

In addition to the standard linear methods, nonlinear anal-
ysis of HRV has shown a great potential in cardiovascular
research. Related to diabetes, the complexity of short-term
HRV was shown to be reduced in patients with type 1 DM
(T1DM) [14]. Furthermore, complexity analysis has been
used for identifying CAN in [8] and a multiscale Renyi
entropy was proposed for identification of CAN in [15].

In this paper, the complexity of HRV in type 2 DM
(T2DM) was assessed and its associations with BGL and
duration of diabetes were evaluated. The complexity of HRV
time series was examined using Shannon entropy (ShanEn),
sample entropy (SampEn), multiscale entropy (MSE) and
multiscale Renyi entropy. HRV and BGL data from 32
healthy controls and 54 T2DM patients were analyzed. Some
of the subjects were measured more than once (1-5 visits per
subject during 2002-2011, on average 2 visits per subject)
resulting in 158 measurements.

II. MATERIALS AND METHODS

A. Subjects and recordings

After standard exclusion criteria were applied to ensure
that any changes in HRV detected were due to the diabetic
status, 32 healthy controls and 54 type 2 diabetes mellitus
patients who were participants of a health screening clinic at
Charles Sturt University were included in the study. Some of
the subjects were measured more than once (1–5 visits per
subject during 2002–2011, on average 2 visits per subject)
resulting in a total of 158 measurements. None of the diabetic
patients showed clinical evidence of CAN.

Blood glucose was measured clinically using an Accu-
Chek Advantage II glucometer (Roche Australia P/L). A rest-
ing electrocardiogram (ECG) was recorded over 20 minutes
at 400 Hz sampling rate using a lead II configuration (Maclab
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ADInstruments, Australia). The R-wave time instances were
extracted from the ECG using an adaptive QRS detection
algorithm and the RR interval time series were formed. The
very low frequency trend components were removed from
the RR series by using a smoothness priors method [16].

The study was approved by the Charles Sturt University
Human Ethics Committee and written informed consent was
obtained from all participants.

B. Entropy measures of HRV

In general, entropy is a measure of complexity or unpre-
dictability of a time series. Shannon’s entropy is calculated
by the equation

H(x) = −
N∑
i=1

p(xi) logb p(xi) (1)

where the probability density function p(xi) is the proba-
bility that the random variable x = xi and b is the base
of the logarithm, commonly 2. The probabilities were here
estimated simply from RR interval histogram.

Sample entropy is a commonly used entropy measure
which is computed as follows [17]. First, embedding vectors
of length m are formed from the length N RR interval series

uj = (RRj,RRj+1, . . . ,RRj+m−1). (2)

Next, relative number of vectors uk for which d(uj , uk) ≤ r
is calculated

Cmj (r) =
nbr of

{
uk
∣∣ d(uj , uk) ≤ r}
N −m

∀ k 6= j. (3)

where d(uj , uk) is the maximum absolute difference between
the vector elements and r is a tolerance value. The values of
Cmj (r) are then averaged to yield

Cm(r) =
1

N −m+ 1

N−m+1∑
j=1

Cmj (r) (4)

and the sample entropy is obtained as

SampEn(m, r,N) = ln (Cm(r)/Cm+1(r)). (5)

Here, the embedding dimension was 2 and the tolerance
value was set to 20% of the time series standard deviation
(SD).

The multiscale entropy is a fairly new method which
captures the complexity of the time series for multiple time
scales [18]. In this method, consecutive coarse-grained time
series y(τ)t (corresponding to scale factor τ ) are constructed
from the given time series xt = (x1, x2, . . . , xN ) by averag-
ing xt within a non-overlapping window of length τ . That is,
each element of the coarse-grained time series is calculated
as

y
(τ)
j =

1

τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ. (6)

The sample entropy measure for each coarse-grained time
series is then calculated producing the MSE. MSE was here
calculated from τ = 1, . . . , 20. Scale τ = 1 gives simply the

TABLE I
HRV ENTROPY PARAMETER VALUES (MEDIAN VALUES AND 25TH AND

75TH PERCENTILES) FOR CONTROL SUBJECTS AND T2DM PATIENTS

HRV group results
Entropy Control (N=32) T2DM (N=54)
parameter Median (25th,75th)% Median (25th,75th)% p1

Shannon entropy 4.85 (4.64,5.01) 4.85 (4.60,4.99) 0.810
SampEn 1.76 (1.62,1.83) 1.81 (1.67,1.94) 0.022
MSE
τ = 10 0.87 (0.77,0.98) 0.96 (0.80,1.18) 0.011
τ = 11 0.74 (0.66,0.94) 0.93 (0.72,1.08) 0.003
τ = 12 0.73 (0.65,0.83) 0.84 (0.64,1.00) 0.022
τ = 13 0.65 (0.59,0.76) 0.78 (0.64,0.93) 0.003
τ = 14 0.60 (0.51,0.71) 0.71 (0.57,0.84) 0.020
τ = 15 0.53 (0.49,0.65) 0.66 (0.53,0.85) 0.002

Renyi entropy
α = −5 1.006 (1.001,1.019) 1.001 (0.999,1.008) 0.002
α = −4 1.004 (1.001,1.012) 1.000 (0.999,1.005) 0.002
α = −3 1.002 (1.000,1.007) 0.999 (0.998,1.003) 0.002
α = −2 1.000 (0.999,1.003) 0.999 (0.998,1.001) 0.003
α = −1 0.999 (0.998,1.000) 0.999 (0.998,0.999) 0.037
α = 1 0.997 (0.995,0.997) 0.997 (0.996,0.998) 0.003
α = 2 0.996 (0.994,0.997) 0.997 (0.995,0.998) 0.001
α = 3 0.995 (0.992,0.996) 0.996 (0.994,0.998) <0.001
α = 4 0.995 (0.990,0.996) 0.996 (0.994,0.997) <0.001
α = 5 0.994 (0.989,0.995) 0.996 (0.993,0.997) <0.001
1 Mann-Whitney U test for the difference between control subjects

and T2DM patients.

original time series, and thus, MSE for this scale is equal to
SampEn.

Renyi entropy is a generalization of the Shannon entropy

Hα(x) =
1

1− α
log2

(
N∑
i=1

p(xi)
α

)
(7)

where α is the order of the entropy measure, producing the
multiscale entropy. Unlike the Shannon entropy computation,
the probabilities are here estimated using the methods out-
lined in [19]. This involves estimating the probability density
function of all other samples xj and then estimating p(xi)
as the probability given by this density function

p(xi) =

N∑
j=0

exp

(
dist2ij
2σ2

)
(8)

where σ is a parameter controlling the width of the density
function and the distance measure is

distij =

π∑
k=0

(xi+k − xj+k)2 (9)

where π is the pattern length over which comparison occurs.
The multiscale Renyi Entropy was calculated from −5 ≤
α ≤ +5, where α = 1 is the Shannon entropy and α = 2 is
the squared entropy.

III. RESULTS

Most of the entropy measures, all except Shannon entropy
(ShanEn), showed a clear difference between control subjects
and T2DM patients as shown in Table I. SampEn, MSE and
Renyi entropy for positive orders (α ≥ 1) were all lower for
controls compared to T2DM patients. In MSE, the difference
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Fig. 1. Renyi entropy and MSE for healthy controls and T2DM patients
with normal, elevated and hyperglycemic BGL.

between the groups was most significant at scale factors 10-
15. Renyi entropy showed group-wise differences also for
negative orders.

The effect of glycemia on HRV complexity was then
evaluated within the T2DM patients for whom BGL varied
between 3.3–17.6 mmol/l. In order to observe the effect
of BGL on HRV entropy, the data was divided into four
groups with different glycemic levels (3–5.5, 5.5–7, 7-11 and
>11 mmol/l, which correspond to clinically relevant cut-off
values). The median values of Renyi entropy and MSE for
these four T2DM groups as well as for the healthy controls
are shown in Fig. 1.

Boxplots showing the observed associations between HRV
entropy measures and blood glucose level are shown in
Fig. 2. MSE for scale factor 10 and Shannon entropy were
both increased in hyperglycemia. Renyi entropy decreased
for negative orders and increased for positive orders in
hyperglycemia, the figure showing Renyi results for orders -
4 and 4. Sample entropy showed no difference in association
with BGL.

Secondly, the effect of diabetes duration on different HRV
entropy parameters was evaluated and the results for different
entropy measures are shown in Fig. 3. Shannon entropy,
sample entropy and MSE did not show any significant
changes in association with diabetes duration. However, the
Renyi entropy increased for positive orders and decreased
for negative orders as a function of the disease duration as
can be seen from Fig. 3 where Renyi entropy is presented
for orders -4 and 4. The most significant change in Renyi
entropy took place around 10 years (disease duration 5-10
years vs. 10-15 years).

Fig. 2. Box plots of HRV complexity associations with blood glucose level.
On each box, the central mark is the median, the edges of the box are the
25th and 75th percentiles, and the whiskers extend to the most extreme
parameter values excluding outliers (which are not plotted). Significant
differences between all the ”boxes” were tested using the Mann-Whitney U
test (*p ≤ 0.05, **p ≤ 0.01).

Fig. 3. Box plots of HRV entropy associations with duration of diabetes
(box descriptions as in Fig. 2). Significant differences between successive
”boxes” were tested using the Mann-Whitney U test (*p ≤ 0.05, **p ≤
0.01).
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IV. DISCUSSION

The association of HRV complexity, assessed through
different entropy measures, with blood glucose level and
duration of diabetes in T2DM patients was examined.

HRV complexity was observed to increase in hyper-
glycemia. This was shown as increases in Shannon entropy
and MSE as a function of BGL. Multiscale Renyi entropy
for positive orders mildly increased in association with BGL
even though the changes were not significant between the
selected BGL ranges. For negative orders the Renyi entropy
decreased in hyperglycemia. Sample entropy did not show
any significant changes in association with glycemic level.
In our previous study where standard linear measures of HRV
were assessed, an increase in heart rate and decrease in HRV
were observed in hyperglycemia [13]. The decreased HRV
is related to reduced intensity of the periodic LF and/or HF
components of HRV which can partly explain the increased
complexity observed in this study.

Secondly we evaluated the effect of diabetes duration
on the different HRV entropy parameters. Renyi entropy
increased for positive orders and decreased for negative
orders as a function of disease duration. The most significant
change in Renyi entropy happened around 10 years of disease
duration. The other entropy measures assessed in this study
did not show any significant changes in association to disease
duration.

In conclusion, the results of this study indicate that HRV
entropy measures, especially the multiscale Renyi entropy,
can be used for assessing elevated glycemic values and
the unfavorable effects of high blood glucose on cardiac
autonomic function in T2DM patients.
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