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Abstract—During the last decades, especially via the EU 

initiative related to the Virtual Physiological Human, 

significant progress has been made in advancing “in-silico” 

computational models to produce accurate and reliable tumor 

growth simulations. However, currently most attempts to 

validate the outcome of the models are either done in-vitro or 

ex-vivo after tumor resection. In this work, we incorporate 

information provided by fluorescence molecular tomography 

performed in-vivo into a mathematical model that describes 

tumor growth. The outcome is validated against tumor 

evolution snapshots captured in-vivo using advanced molecular 

probes in laboratory animals. The simulations are inline with 

the actual in-vivo growth and although alternative modeling 

parameters can lead to similar results challenging for 

additional microscopic information and imaging modalities to 

drive the in-silico models, they all show that hypoxia plays a 

dominant role in the evolution of the tumor under study.  

I. INTRODUCTION 

Considerable progress in understanding cancer on the 
molecular, cellular and tissue level has undoubtedly provided 
new powerful weapons for fighting the disease. Furthermore, 
a number of computational (in-silico) models have been 
developed in order to study the various phases and scales of 
cancer describing different levels of biocomplexity [1, 2]. 
Most of the approaches in in-silico oncology have been 
targeted to the provision of insight into the tumor growth 
mechanisms (cancer biology modeling). Yet, a parallel need 
of crucial importance is to serve the above models with 
advanced anatomical and functional imaging methods able to 
localize and image the tumor, while being appropriate for in 
vivo staining, such as fluorescence molecular probes, and 
proteins. 

 
Research supported in part by the TUMOR (FP7-ICT-2009.5.4-247754) 
project and by the FP7 EU Grant “FMT-XCT”. 

V. Sakkalis, E. Tzamali, A. Roniotis; G. Tzedakis, G. Grekas, K. Marias 

are with the Institute of Computer Science, Foundation for Research and 
Technology – Hellas, N. Plastira 100, 70013, Heraklion Crete, Greece (e-

mail:{sakkalis; tzamali; roniotis; gtzedaki; ggrekas; kmarias}@ics.forth.gr).  

R. Favicchio was with the Institute for Electronic Structure and Laser, 
Foundation for Research and Technology – Hellas, N. Plastira 100, 

Heraklion Crete, Greece. She is now with the Comprehensive Cancer 

Imaging Center, Imperial College, London UK (e-mail: 
r.favicchio@imperial.ac.uk). 

J. Ripoll was with the Institute for Electronic Structure and Laser, 

Foundation for Research and Technology – Hellas, N. Plastira 100, 
Heraklion Crete, Greece. He is now with the Dept. of Bioengineering and 

Aerospace Engineering, Universidad Carlos III of Madrid, Avda. de la 

Universidad 30,28911 Leganés, Madrid Spain (e-mail: 
jorge.ripoll@uc3m.es) 

G. Zacharakis is with the Institute for Electronic Structure and Laser, 

Foundation for Research and Technology – Hellas, N. Plastira 100, 70013, 
Heraklion Crete, Greece. 

On the other hand, advances in biomedical imaging 
technologies brought about in recent years have 
revolutionized the way we approach a variety of medical and 
biological questions. Novel technological approaches have 
shed light into biological processes and function, with the 
field of in vivo molecular imaging being recognized as one of 
the most influential for translational research [3, 4]. By 
connecting gene activity with physiology the molecular basis 
of health and disease can be studied and understood. 
Important factors of disease and especially cancer, such as 
angiogenesis, hypoxia, metabolism and the pathways 
regulating the response to external stimuli can now be 
targeted and monitored at a very early stage and at a 
molecular level.  

In the field of optical tomographic imaging, increasingly 
used for pre-clinical research, a wide variety of probes have 
been developed enabling the specific targeting of many 
different molecular functions. In addition, the ability to use 
fluorescing proteins with animal cancer models makes 
monitoring the progress of disease straightforward. Optical 
tomographic techniques can provide 3D imaging of 
fluorescence light emitted from the probe or protein [5, 6]. In 
the case studied and presented here a Fluorescence Molecular 
Tomography (FMT) system is used to image signal emitted 
from HeLa cancer cells expressing the red emitting protein 
Katushka injected subcutaneously in the hind limb flank of 
mice. Imaging performed longitudinally provides a direct 
monitoring of the growing tumor [7]. 

II. MATERIALS AND METHODS 

A. Animal preparation 

For the studies presented here Rag1-/- immunodeficient 
mice were used. Katushka expressing HeLa cancer cells were 
injected subcutaneously and grown as xenografts in the hind 
limb flanks. Initially 5x10

5
 cells were injected and tumors 

were allowed to grow until 4-10mm in diameter. Animals 
were kept anaesthetized using isoflurane throughout the 
preparation and imaging procedures. A small tumor (typically 
<1mm diameter) was generally visible within 4-5 days 
following the injection, at which point imaging was initiated, 
while the mice were sacrificed 11-20 days after implantation, 
depending on tumor size. 

B. Experimental procedure 

The experimental system used for in-vivo imaging 
comprises a series of laser sources employed according to the 
fluorescence target. A diode laser (Soliton-GmbH, Germany) 
emitting at 592nm was used to excite Katushka as close to 
the absorption maximum as possible. A cooled 16-bit CCD 
(Andor BV-434, Belfast, Northern Ireland) camera was used 
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for the detection of signals. Light collection was performed 
through a 50mm Macro f/2.8 objective (SIGMA Corporation, 
Tokyo, Japan) and different interference bandpass filters 
(Andover Corporation, USA) for isolating the fluorescence 
and excitation signals. In the case presented here, 
fluorescence was acquired using a 700/75nm filter, whereas 
no filter was used for the excitation. The system can be 
operated in both transmission and reflection geometry, 
however, in this study only reflection measurements were 
done since the targets were superficially located. An optical 
scanner was employed to scan the laser source into the 
desired points on the surface of the subject. In all experiments 
described here 49 illumination points were used in a 7x7 
arrangement. 

III. IN-SILICO MODELS AND TOMOGRAPHIC IMAGING 

A.  In-silico model 

The mathematical model, presented here, is a 
deterministic, continuum model of reaction-diffusion type 
that describes the spatial (x) and temporal (t) evolution of 
cancer cells and its microenvironment at population level [12, 
13]. The tumor microenvironment consists of the vasculature 
that provides oxygen to cancer cells and tumor-induced 
angiogenic factors (e.g., VEGF). Depending on oxygen 
supply, cancer cells can be proliferative, hypoxic or necrotic. 
The system of the coupled reaction-diffusion equations of the 
concentrations of these species is shown in (1).  
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The first equation describes the evolution of normoxic 
cell density,  (   )  Normoxic cells possess a random 
motility    , proliferate at a rate ρ, turn to hypoxic at a rate   
(when oxygen is inadequate) and turn directly to necrotic 
cells (due to contact death) at a rate   . Similarly, the second 
equation describes the evolution of hypoxic cells,  (   )  
Hypoxic cells diffuse at a rate    , turn back to normoxic 
cells at a rate   (if oxygen supply increases) and turn to 
necrotic at a rate    (if oxygen is insufficient). The rates   
and   are made proportional to metabolic rate ρ and reflect 
the cellular response time to changes in the environment. The 
third equation shows the evolution of necrotic cells,  (   )  
Continuing, oxygen ( ) is produced by vasculature at a rate 
  , diffuses at a rate    and is consumed by normoxic and 
hypoxic cells at a rate     and    , respectively. Endothelial 
cells (forming the vasculature),  (   )  diffuse randomly at a 
rate   , proliferate at a rate   , which depends on the 

concentration of angiogenic factors according to the Monod 

model (    
 

    
,   is the maximal proliferation rate of 

endothelial cells and    is the Michaelis–Menten constant 
reflecting the response of endothelial cells to angiogenic 
factors) and turn to necrotic cells at a rate   . Lastly, 
angiogenic factors,  (   ), diffuse in the tissue at a rate   , 

are produced by normoxic and hypoxic cells at a rate    and 
  , respectively, taken up by endothelial cells with a 
coefficient  , decay at a rate   and are washed out by vessels 
at rate  . In these equations,   (       )  , where 
   corresponds to the tumor cell carrying capacity. The term 
(   ) is used to reflect the inhibition of motility and 
proliferation due to cellular crowding.  

This model was initially used to simulate glioma growth 
[12], but was adapted in this work to meet the growth pattern 
of HeLa cells by significantly decreasing diffusion 
coefficients and proliferation rate, as found in [15]. The rest 
parameter values used in this model are in accordance to [12, 
13]. The spatiotemporal solution of the system is 
approximated by applying numerical schemes of Finite 
Differences in two spatial dimensions. Implementation 
details can be found in [15]. 

C. Tomographic imaging 

Tomographic imaging was performed by raster scanning 

the laser source into selected illumination points on the 

subject, taking care that the scanning area covers the 

targeted tumor. For each illumination point two 

measurements are recorded sequentially, by selecting the 

appropriate filters as described above: the excitation light 

diffusely reflected back to the camera and the fluorescence 

light emitted by the Katushka expressing cancer cells. The 

two measurements were then combined in the tomographic 

algorithm to produce the 3D reconstructions. Light 

propagation was modeled by Diffusion Theory, while a 

normalized calculation approach was used to combine the 

two acquired intensities [8, 9]. Reconstructions were 

performed with an iterative method with a mesh size of 

26x26x6 voxels giving an axial resolution of 0.5mm and a 

depth resolution of 0.8mm [10, 11]. The result is a 3D 

reconstruction of the fluorescence intensity that can be 

associated to the cancer tumor and when longitudinal studies 

are performed, monitor its growth over time. 

IV. RESULTS 

In this section the results from in-vivo imaging and the in-
silico model applied to the requirements of the specific 
mouse model are presented. 

A. In-vivo tumor growth 

As described above to monitor tumor growth in-vivo 
animals were imaged for several days and fluorescence data 
were analyzed for each imaging session in order to obtain the 
growth curve of the tumor. Characteristic images of the 
excitation and fluorescence signals recorded during the study 
can be seen in Fig. 1b and c. These excitation and 
fluorescence data were obtained by summing up the raw 
images for all illumination points. Data in Fig. 1 correspond 
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to day 9 after the injection of the HeLa cells where a clear 
tumor can be observed with a size of circa 4-5mm.  

 Fig. 1a presents the fluorescence reconstruction in 3D 
overlaid on the white light image of the animal. The data 
from the reconstructions from each day were then used to 
obtain the growth curve of the specific tumor. This was 
performed by calculating the mean fluorescence intensity of 
the reconstruction and then plotting against time (days). 
Results are presented in Fig. 3a (red-square-pointed line) 
where reconstructed fluorescence intensity divided by the 
reconstructed fluorescence intensity at day 9 after injection 
(relative growth) is plotted as a function of time and 
compared with the in-silico predictions (blue line). A fast 
onset of growth is observed for the first 3 days, which is then 
slowed down until a plateau is reached after the 7

th
 day. This 

behavior can be explained by the complexity of the tumor 
environment that cannot always maintain a constant balance 
of supply and demand of nutrients and can be simulated by 
the in-silico model, as presented in the following section.  

B. In-silico tumor growth 

In order to simulate tumor growth, we used the 
mathematical model described in section III. The system of 
equations (1) were solved in a 100 100 grid spanning an 
overall area of     for        The temporal resolution 
was set to     . In order to simplify the simulations and 
compensate for missing parameter values, the model was 

non-dimensionalized as described in [13]. Thus,  ̂  
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The complete set of the parameter values used in the 
model are depicted in Table I. The proliferation rate of HeLa 
cells is set according to [14]. For simplicity, in all simulations 
described here, the initial distribution that describes the 
vasculature is assumed homogeneous. However, it must be 
stressed that similar results have been obtained (data not 

shown) when initialize vasculature with various 
heterogeneous distributions. The oxygen concentration is 
initialized at its saturation value ( (   )   ) and the initial 
concentration of angiogenic factors is assumed zero 
( (   )   ). For simplicity, the tumor population is 
assumed to initially consist of only normoxic cells. Thus, 
 (   )    and  (   )   , although hypoxia must have 
been developed in the real tumor at day 9 after injection.  The 
initial distribution of normoxic cells ( (   )) is 
approximated with i) a Gaussian distribution of standard 
deviation              (model A) and ii) the 

fluorescence intensity distribution of a 2D-depth slice at day 
9 (model B), as shown in Fig. 2a. Although the reconstructed 
fluorescence intensity is linear with viable fluorescing cells 
allowing for relative comparisons, the exact correspondence 
between fluorescence intensity values and cell population is 
missing. Therefore, the initial normoxic distributions are 
allowed to attain various maximum values. To compare the 
simulations with the in-vivo growth curve, the total sum of 
normoxic and hypoxic concentrations in the computational 
grid is calculated at each simulation time point and divided 
by the initial sum of normoxic and hypoxic concentrations 
(relative growth).  

The simulations suggest that in order to achieve the 
observed growth curve and avoid saturation of cellular 
concentrations as indicated by fluorescence measurements, 
the initial tumor population must be sparsely distributed. For 
model B, the maximum value of the initial normoxic 
concentration is set to 0.3. We intentionally initialize model 
A with a Gaussian distribution of smaller standard deviation 
than the initial size of the tumor in order to additionally 
demonstrate its previous exponential growth phase. The 
initial height of the Gaussian model A is set to 0.05. It is 
important to mention that alternative sets of modeling 
parameters concerning specifically the level of tumor 
vascularization ( (   )), the maximum value of the initial 

  

Figure 1.  2D raw data obtained during in-vivo imaging of tumor growth in 

a mouse model. a) 3D fluorescence reconstruction image showing the tumor 
in the flank of the mouse. b) image of the excitation light showing the 

scanning area and c) image of the fluorescence light emitted by the 

Katushka expressing HeLa cells. 

 

Figure 2.  a) Initial distribution of normoxic cells in proportion to 

fluorescence intensity feeding model B, b) The predicted distribution of 

viable (normoxic plus hypoxic) cells after 8 fictitious days (day17) c) White 

light image showing the tumor the day the mouse was sacrificed (day 17). 
The tumor is approximately 7mm in diameter. 

 

TABLE I – THE PARAMETERS FOR PIHNA MODEL SIMULATION AND THEIR NONDIMENSIONALIZED VERSIONS 

Parameter Value Nondim. Parameter Value Nondim. Parameter Value Nondim. 
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normoxic distribution, and the normoxic-hypoxic conversion 
rates   and  , which are all interrelated and determine the 
cellular composition within tumor, can lead to similar results.  

Interestingly, as can be seen in Fig. 2b the shape 
predictions of the final tumor for model B are similar to the 
ex-vivo data (Fig. 2c). As can be seen in Fig. 3a, the 
predicted growth curves of both model A (blue line) and 
model B (green line) are inline with the in-vivo observations 
(red-square-pointed line) and well approximate the fast 
growth of the first days and the following slowdown phase of 
tumor cells. This behavior can be explained by the increasing 
hypoxia within tumor (Fig. 3b). Angiogenic factors triggered 
by hypoxic cells initiate endothelial proliferation and a new 
vasculature is established (data not shown). Yet, the new 
vasculature is insufficient for the increasing metabolic 
demands of cancer cells. As depicted in Fig. 3c, tumor size 
also reaches a plateau after several days of growth. In 
accordance to in-vivo experiments, model B estimates that 
the tumor diameter increases from 5 to 7mm within 8 days.   
Furthermore, the simulations show that low diffusion rate of 

cancer cells (model C) is important for the tumor growth to 
reach a plateau (Fig. 3a-black line).   

V. DISCUSSION 

Fig. 4 illustrates a high linear correlation between in silico 
prediction and in vivo captured data. Furthermore, the 
simulations suggest that nutrient competition is a key 
determinant for explaining the growth behavior of the tumor 

under study. The simulations show the importance of proper 
initialization in predicting the evolution of tumor and 
challenge for additional microscopic information to drive the 
in-silico model.  

VI. CONCLUSION 

Current models proposed in the modeling community are 
either incomplete or inapplicable in the clinical practice 
mainly because the output provided is highly variable and 
parameter dependent. Hundreds of parameters are non-
specified or intuitively used based on theoretical concepts. 
Molecular functional imaging techniques, especially 
Fluorescence Molecular Tomography, provide the means to 
assess parameters in-vivo and validate the outcome of the 
predictions. Further work in this direction is expected to 
demonstrate the potential for clinical translation of the 
proposed models by increasing confidence in the clinical 
community. 
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Figure 3.  a) in-vivo obtained growth curve (red-square-pointed line) is 

compared with in-silico predictions. Model A (blue line) is initialized with a 

Gaussian distribution. The exponential phase prior to measurements (day 9) 
can be seen. Model B (green line) is initialized with the fluorescence 

intensity distribution of a 2D-depth slice assuming that the maximum value 

of the initial distribution is 0.3. Model C (black line) is similar to Model B 

but the diffusion coefficient of cancer cells is      times larger than in 

Model B. b) The temporal evolution of normoxic (blue line), hypoxic (green 

line), necrotic (black line) and viable cells (red line) for model B and c) the 

estimated tumor size as a function of time.  

 

Figure 4.  Plot showing the comparison between in vivo and in silico 

obtained values. A clear linear relation is observed. 
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