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Abstract— Various connective tissue diseases lead to morpho-
logical alternations of blood capillaries. Consequently, observa-
tion of the capillaries at the finger nailfold – nailfold capil-
laroscopy (NC) – is a standard method for diagnosing diseases
such as scleroderma or Raynaud’s phenomenon. This is typi-
cally performed through manual inspection by an expert to lead
to a determination of one of the established NC scleroderma
patterns (early, active, and late). In this paper, we present an
automated method of analysing nailfold capillaroscopy images
and categorising them into NC patterns. For this purpose, we
extract a carefully chosen set of texture features from the images
and employ an ensemble classification approach to arrive at
decisions for each captured finger which are then aggregated
to form a diagnosis for the patient. Experimental results on a
set of 60 NC images from 16 subjects demonstrate the accuracy
and usefulness of our presented approach.

I. INTRODUCTION

Nailfold capillaroscopy (NC) is a non-invasive imaging

technique employed to assess the condition of blood capillar-

ies in the nailfold, and is recognised as a realiable and afford-

able method for observing micro blood vessel characteristics

as well as a standard method for diagnosing diseases such

as systemic sclerosis (SSc) [1], Raynaud’s phenomenon [2],

and other connective tissue diseases such as dermatomyositis,

antiphospholipid syndrome [3], and Sjögren’s syndrome [4]

which lead to morphological alterations of capillaries.

Such morphological changes include enlarged and giant

capillaries, haemorrhages, loss of capillaries, disorganisation

of the vascular array, and bushy capillaries [5]. Patterns

observable in NC images of SSc patients have been described

in [6], and refined into early, active and late patterns in [7],

and are also observed in other closely related disorders such

as dermatomyositis or mixed connective tissue diseases.

The three NC patterns can be characterised as follows [8]

(see also Fig. 1 for examples):

• Early (E): few giant capillaries, few capillary haemor-

rhages, relatively well preserved capillary distribution,

no evidence of loss of capillaries.

• Active (A): frequent giant capillaries, frequent capillary

haemorrhages, moderate loss of capillaries with some

avascular areas, mild disorganisation of the capillary

architecture, absent or some ramified capillaries.
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• Late (L): irregular enlargement of the capillaries, few

or absent giant capillaries, absence of haemorrhages,

severe loss of capillaries with large avascular areas,

severe disorganisation of the normal capillary array,

frequent ramified/bushy capillaries.

Scleroderma NC patterns are also used to evaluate other

rheumatic diseases. For example, scleroderma patterns are

often present in dermatositis/polymyositis and are also found

among patients suffering from Raynaud’s phenomenon and

undifferentiated connective tissue diseases [9].

Identification of NC patterns is performed manually by

an expert based on visual inspection of the captured NC

images, typically of images taken from different fingers. In

this paper, we present an automated approach for determining

scleroderma patterns from NC images. For this purpose,

we extract a set of texture descriptors from the images

and employ an ensemble classifier, generated by building

multiple support vector machines (derived from different

feature spaces obtained by applying different feature selec-

tion algorithms) and combining their results using a neural

network fuser. Decisions for individual fingers are then

aggregated to form a final diagnosis. Experimental results

on a set of 60 NC images from 16 subjects demonstrate the

accuracy and usefulness of our presented approach.

II. IMAGE ANALYSIS

A. Pre-processing

Automated analysis of NC images is challenging due to

various factors including image noise, dust on lenses, micro-

motion of fingers, and air bubbles in the immersion oil.

A first step is therefore to remove noise and enhance the

images. In previous work [10], [11] we have performed an

extensive evaluation of a variety of denoising and enhance-

ment algorithms on NC images and consequently apply a

bilateral enhancer [12] on the captured images.

The bilateral enhancer is based on the bilateral filter [13],

a non-iterative, relatively simple algorithm which smoothens

an image while preserving edges by means of a non-linear

combination of nearby image values based on both their

spatial closeness c(ξ, x) and their photometric similarity

s(f(ξ), f(x)). Bilateral filtering is defined as

h(x) =

∫

Ω(x)
f(ξ)c(ξ, x)s(f(ξ), f(x))dξ

∫

Ω(x)
c(ξ, x)s(f(ξ), f(x))dξ

. (1)

The bilateral enhancer [12] extends this concept so that

edge preserving smoothing and selective sharpening is per-

formed simultaneously. A weighted average is utilised that
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Fig. 1. Examples of scleroderma patterns: (a) healthy subject; (b) early; (c) active; (d) late.

is independent of the design of c(.) and s(.) in Eq. (1). The

bilateral enhancer is defined as

j(x) = gf(x) +

∫

Ω(x)
x

c(ξ, x)p(f(x), f(ξ))dξ, (2)

where g = c(x, x)s(f(x), f(x)).

B. Texture analysis

In the few works that attempt to perform automated analy-

sis of NC images [14], [15], [16], [17], [18] single capillaries

are extracted and their layout and shapes used for pattern

classification. In this paper, we follow a different approach.

Not only is exact extraction of capillaries difficult due to

the relatively poor image quality (even after enhancement),

looking at the examples of Fig. 1 again we can notice that

it is possible to distinguish between the different patterns

almost ‘at a glance’. We therefore propose to employ global

image features for analysing and classifying NC images.

In particular, we extract texture information from the

images and use it in a subsequent classification stage to de-

termine the associated scleroderma patterns. While a variety

of texture features exist, those based on local binary pat-

terns [19] have been found to provide excellent performance

for a variety of tasks, including texture classification [20].

We consequently employ LBP features in our approach, also

as we found them to provide better accuracy compared to

other features such as Gabor or wavelet descriptors.

LBP describes the local neighbourhood of a pixel and, in

its basic form, produces 256 texture patterns based on a 3×3
neighbourhood. Neighbouring pixels are set to 0 and 1 by

thresholding them with the centre pixel value. The resulting

sequence of 0s and 1s is then known as the local binary

pattern and a histogram of these patterns over the whole

image is generated. Due to the binary decision making, LBP

is inherently invariant to intensity changes and hence more

robust that other techniques.

LBP patterns are usually obtained from a circular neigh-

bourhood (where values that do not fall exactly at the

centre of pixel are estimated by interpolation), while rotation

invariance can be obtained by mapping all possible rotated

patterns to the same descriptor. Furthermore, certain patterns

are fundamental properties of texture and may thus account

for the majority of LBP patterns. To address this, only

uniform patterns can be utilised where a uniformity measure

is defined by the number of transitions from 0 to 1 or vice

versa in the LBP code.

Uniform rotation invariant LBP descriptors are powerful

texture features and typically perform well [20], however

in preliminary tests we noticed that they did not work as

well as we expected for our task at end. After some further

investigation, we found that including the intensity variance,

which gives an indication of image contrast, leads to a

significant performance boost. Intensity variance, defined as

V ARP,R =
1

P

P−1
∑

p=0

(gp − µ)
2, where µ =

1

P

P−1
∑

p=0

gp, (3)

where R defines a radius and P the number of LBP neigh-

bours, can be incorporated into LBP to generate a joint

distribution LBPP,R/V ARP,R and give a texture descriptor

that contains local pattern and local contrast information.

An alternative is the use of a hybrid scheme, LBP variance

(LBPV) [21], which uses globally rotation invariant matching

with locally variant LBP texture features, and it is this

method that we employ.

In LBPV, V ARP,R is used as an adaptive weight to

adjust the contribution of the LBP code in the histogram

calculation. LBPV histograms are calculated as

LBPVP,R(k) =

N
∑

i=1

M
∑

j=1

w(LBPP,R(i, j), k), k ∈ [0,K],

(4)

with

w(LBPP,R(i, j), k) =

{

V ARP,R(i, j) if LBPP,R(i, j) = k

0 otherwise
.

(5)

III. PATTERN CLASSIFICATION

The extracted LBPV texture features then form the basis of

a pattern classification stage, where, based on training from

known samples, we derive a classifier to identify the sclero-

derma pattern of an image from its texture characteristics.

Pattern classification is a much explored topic with many

different classification algorithms proposed in the litera-

ture [22]. Recently, much attention has been devoted to

the development of ensemble classifiers, or multiple clas-

sifier systems [23]. Consequently, while in earlier work we

employed a single classifier [24], in this paper we use an

ensemble of classifiers. When focussing solely on a single

classifier, we discard the fact that other models may also pro-

vide a valuable contribution that could be incorporated into

the decision making process. The idea of ensemble classifiers

is hence to exploit the strengths and local competencies

of a pool of classifiers, while at the same time reducing

their individual weaknesses. Consequently, an appropriately

constructed combination of several predictors can give better

results than any single one of them.

Our proposed classifier system is carefully crafted and

consists of three main phases:

1) Creation of a pool of diverse individual classifiers;
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2) Pruning the pool by removing redundant predictors;

3) Using a trained fuser based on discriminants to combine

the outputs of the classifiers.

In the following, we describe these steps in detail.

A. Classifier pool

Individual classifiers used as base models for the commit-

tee play a crucial role in the ensemble design process. These

models should be complementary to each other, and thus

exhibit both high accuracy and high diversity so that jointly

they may outperform any single model from the pool.

It is well known that there is no single optimal approach

for feature selection and that consequently results obtained

on the basis of different methods may differ significantly.

Therefore, instead of using a single feature selection method

we employ several of them. We thus generate a diverse pool

of classifiers through application of different feature selection

algorithms; for L feature selection methods we construct a

pool of L individual classifiers ΠΨ = {Ψ(1),Ψ(2), ...,Ψ(L)}.
As base classifier, we utilise a support vector machine

(SVM) [25] with a radial basis function kernel, trained using

the SMO procedure [26], and employing a tuning procedure

to obtain optimal cost and kernel parameters. We use eight

different feature selection algorithms, namely ReliefF [27],

Fast Correlation Based Filter [28], Genetic Wrapper [29],

Simulated Annealing Wrapper [29], Forward Selection [29],

Backward Selection [29], Quick Branch & Bound [29] and

Las Vegas Incremental [29].

B. Ensemble pruning

In ensemble classifier design, not all of the L models

in ΠΨ should necessarily be used as ensemble members,

since some of them may be redundant and therefore should

be discarded. While there are various ways of selecting

“valuable” committee members, diversity measures are often

considered to be one of the most effective methods [30].

For measuring the diversity of the whole ensemble we use

an entropy measure. The highest diversity among classifiers

for a particular object xj ∈ X is equal to L/2 of the votes

in xj with the same value (0 or 1) and the other L− [L/2]
with the alternative value. If l(xj) denotes the number of

classifiers that correctly recognise a given sample, entropy-

based diversity can be described by

E =
1

N

N
∑

j=1

1

L− [L/2]
min{l(zj), L− l(zj)}, (6)

with E in [0; 1] where 0 indicates no difference and 1 indi-

cates the highest possible diversity. We perform an exhaustive

search to find a pruned pool of K classifiers exhibiting the

highest possible diversity.

C. Classifier fusion

For combining the different base classifiers, we employ a

trained fuser based on discriminant analysis (as opposed to

using the predicted class labels). Assume that we have an

ensembe of K classifiers, Ψ(1), Ψ(2), ..., Ψ(K), after the

pruning procedure. For a given object x ∈ X , each individual

classifier decides for class i ∈ M = {1, ...,M} based on

the values of discriminants. Let F (l) (i, x) denote a function

that is assigned to class i for a given value of x, and that is

used by the l-th classifier Ψ(l). The combined classifier Ψ
uses the decision rule

Ψ(x) = i if F̂ (i, x) = max F̂ (k, x)
k∈M

, (7)

where

F̂ (i, x) =

K
∑

l=1

w(l)(i)F (l) (i, x) and

K
∑

i=1

w(l)(i) = 1. (8)

The weights can be set dependent on the classifier and

class number: weight w(l)(i) is assigned to the l-th classifier

and the i-th class, and given classifier weights assigned to

different classes may differ.

The trained fuser we employ is a neural fuser imple-

mented as a one-layer perceptron [31]. The values of support

functions given by each of the base classifiers serve as

input, while the output is the weighted support for each of

the classes. One perceptron fuser is constructed for each

of the classes. The perceptron may be trained with any

standard procedure used in neural network learning (we use

the Quickprop algorithm), and the input weights established

during the learning process are then the weights assigned to

each of the base classifiers.

D. Patient classification

For NC diagnosis, typically several fingers are inspected

as specific NC patterns might not show on every finger. A

decision is then made based on all fingers. Based on detection

of scleroderma patterns in individual images, a late decision

is made if at least 2 fingers are classified as late, otherwise an

active pattern is determined if at least 2 fingers are classified

as active. Similarly, an early pattern is assigned if at least

fingers are classified as early (and no late or active decision

has been made).

IV. EXPERIMENTAL RESULTS

We carried out our experiments on a dataset of sixteen

subjects with NC images for three to four fingers for each pa-

tient. The images (some are shown in Fig. 1) were obtained at

the Dermatology Unit, Clinical Hospital of Chieti, following

their standard protocol, and using an Olympus SZ40 stereo

microscope coupled with an external light source. A ground

truth for all patients was also obtained by manual inspection

carried out by a consultant. Of the 16 subjects, six were

found to show early, six active, and two late patterns; the

remaining two were control subjects.

Each image is enhanced using the bilateral enhancer and

LBPV texture descriptors (LBPV riu2
5,8 , i.e. rotation invariant

uniform mapping at uniformity two) are extracted. For eval-

uation, we perform standard leave-one-out cross validation

(LOOCV) on a patient basis; that is the classifier is trained

on all but one subject for which we run the test, and the

procedure is repeated for all patients (i.e., 16 times in total).

The obtained results are summarised in Table I where

we give both the results of classifying each of the fingers
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separately and the overall decision for the patient. From

Table I, we can see that in most cases the correct pattern for a

finger is identified, namely in 50 of the 60 cases which gives

a correct classification of 83.3% on a per finger basis. When

aggregating the individual predictions, the correct patient

diagnosis is obtained in all but one case (Control 2 which is

mistaken as an early patient).

TABLE I

CLASSIFICATION RESULTS. INCORRECT RESULTS ARE BOLDED.

Patient Finger 1 Finger 2 Finger 3 Finger 4 Patient

Control 1 C E C - C
Control 2 E C E E E

Early 1 E E E E E
Early 2 E E A - E
Early 3 E E E E E
Early 4 E E E E E
Early 5 E E E E E
Early 6 E E E E E

Active 1 E A A A A
Active 2 C A A A A
Active 3 A A A A A
Active 4 A A A A A
Active 5 A A A - A
Active 6 A A A - A

Late 1 E L L L L
Late 2 L L E E L

Overall, it is clear that our approach provides excellent

performance and hence a useful tool for NC based diagnosis.

V. CONCLUSIONS

In this paper, we have presented an approach to analysing

nailfold capillaroscopy images with the aim to autmatically

identify scleroderma patterns. For this, we extract a set of

texture features from the images and employ an ensemble

classifier for decision making. Our approach is shown to

work well and to give excellent performance on a test dataset

of 60 images from 16 patients. Future work will focus

on capturing a larger dataset for evaluation and alternative

methods of aggregating individual finger classifications.
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