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Abstract— Using more than one classification stage and
exploiting class population imbalance allows for incorporating
powerful classifiers in tasks requiring large scale training
data, even if these classifiers scale badly with the number of
training samples. This led us to propose a two-stage classifier
for segmenting tibial cartilage in knee MRI scans combining
nearest neighbor classification and support vector machines
(SVMs). Here we apply it to femoral cartilage segmentation.
We describe the similarities and differences between segmenting
these two knee cartilages. For further speeding up batch SVM
training, we propose loosening the stopping condition in the
quadratic program solver before considering moving on to other
approximation techniques such as online SVMs. The two-stage
approach reached a higher accuracy in comparison to the one-
stage state-of-the-art method. It also achieved better inter-scan
segmentation reproducibility when compared to a radiologist
as well as the current state-of-the-art method.

Index Terms— femoral cartilage, support vector machine,
nearest neighbor classifier, online support vector machine,
osteoarthritis, magnetic resonance imaging

I. INTRODUCTION

The need to cope with large scale data in medical imaging
often limits the use of complex classifiers having excellent
generalization ability. An example of such a classifier is
a non-linear support vector machine (SVM, [1]), where
the training time scales worse than quadratically with the
number of training data points. In our previous work [2],
we presented a two-stage cascaded classifier approach to
overcome this restriction. The proposed classifier was applied
to segment tibial cartilage in low-field knee MRI scans and
outperformed the state-of-the-art method. As a step towards
completing the study we apply the similar approach for
segmenting femoral cartilage, also from low-field knee MRI
scans. The segmentation of articular cartilage is useful for the
quantitative analysis of the deterioration of articular cartilage,
which causes osteoarthritis. Osteoarthritis is one of main
causes of work disability through out the world specially for
the elderly population. Non-invasive assessment of articular
cartilage are most commonly done using MRI scans [3].

In a general two-stage classifier for segmentation, we have
a classifier trainable on huge data-sets in the first stage.
However, the goal of this first stage is not necessarily to
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achieve best segmentation results, but to maximize sensitiv-
ity, that is, to minimize false negatives. The points classified
as background by the first stage are labeled accordingly,
while all the points classified as foreground go through a
second stage of classification. The classifier used at this
stage can be a more powerful classifier, which may scale
badly with number of training data points. However, if the
background population is large compared to the foreground
population and a large portion of background population is
screened in the first stage, a significantly smaller portion of
data points is fed into the second-stage classifier. This makes
it possible to use classifiers scaling badly with number of
training data points.

In this study, we extend our earlier work and apply the
two-stage approach to segmenting femoral cartilage. The
approach is compared to the state-of-the-art method that is
based on one stage of nearest neighbor classification. We
discuss the similarities and differences in segmenting femoral
and tibial cartilages as well as the challenges faced due to
the even higher amount of training data compared to [2].
Furthermore, we consider images of subjects scanned twice
within one week and investigate the inter-scan reproducibility
of the proposed classifier in comparison to a radiologist and
the current state-of-the-art method.

II. RELATED WORK

Computer-aided segmentation of the articular cartilage
from the knee MRI scans is an active research field. Methods
either rely on 2D approaches to segment slice by slice or
directly use 3D segmentation. Stammberger et. al. [4] used
b-splines to segment each slice of MRI scan. Another slice-
by-slice cartilage segmentation method based on active shape
models was proposed by Solloway et. al. [5]. Folkesson et. al.
[6] developed a 3D voxel classification approach which can
be considered as state-of-the-art method for fully automatic
segmentation. A semi-automated method was developed by
Bae et. al. [7]. Their segmentation method is based on
graph-cut algorithm. They performed volumetric measure-
ments of the cartilage from high-resolution knee magnetic
resonance (MR) images from the Osteoarthritis Initiative
(OAI) database and assessed the intra and inter-observer
reproducibility of measurements obtained via their method.
A semi-automatic method based on radial transformation was
proposed by Chang et. al. [8]. Yin et. al. proposed a method
for simultaneous segmentation of bone and cartilage surfaces
[9]. A fully automatic method was proposed by Seim et. al.
who segmented bones and cartilage from MRI scans using
statistical shape model and graph based optimization [10].
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Vincent et. al. presented a fully automatic system [11] based
on active appearance models. A three stage scheme was
proposed by Fripp et. al. [12]. In the first stage automatic
segmentation of the bones is performed. In the second
stage, the bone cartilage interfaces is extracted. In the final
stage segmentation of the cartilages is performed. Dodin
et. al. proposed automatic segmentation method for knee
MRI scans acquired using 3T scanner and a knee coil [13].
They segmented bone cartilage interface for tibia and femur
independently. A level sets based algorithm was proposed
in [14] for 3D segmentation, and [15] incorporated multiple
spatial inter-relationship on n-dimensional graphs followed
by graph optimization that yields a globally optimal solution
to segment cartilage.

III. APPROACH

This section presents the two-stage classifier and describes
its application to the segmentation of femoral cartilage. We
also consider the challenges associated with extending the
study from tibial cartilage segmentation to femoral cartilage
segmentation and comment on speeding up SVM training by
approximating the SVM solution.

A. Two-stage classifier

Let us assume w.l.o.g. a binary segmentation problem
where the population of the positive class is less than the
negative class population by at least an order of magnitude.
Let X be the input space and Y = {−1, 1} the output. A
hypothesis h1 : X 7→ Y is learned in the first stage using
all the training data. Let ` be the number of samples and
Dtrain1 ⊂ (X × Y )` be the training data. The hypothesis h1
is tuned to achieve maximum sensitivity and, thus, having
minimum false-negatives. This stage should use a learning
algorithm which can handle a very large number of training
data points. The data points classified as background by
first stage classifier are labeled as background and rest of
the points Dtrain2 = {(x, y) | (x, y) ∈ Dtrain1 ∧ h1(x) = 1}
are used to train our second stage hypothesis h2 . The aim
of the learning algorithm at this stage is to achieve good
segmentation performance. As the number of data points
at this stage is just a small fraction of `, we can employ
a powerful classifier at this stage, even if it scales badly
with training data population. This way, the final two-stage
classifier has good generalization ability and can also handle
huge training data sets. The two-stage classifier can be
summarized as

h(x) =

 −1 if h1(x) = −1
−1 if h1(x) = 1 and h2(x) = −1

1 otherwise
.

Figure 1 depicts the general two stage classifier.

B. Automatic segmentation of femoral cartilage

This section presents the application of a two-stage clas-
sifier to segmenting femoral cartilage. Whenever needed, we
will also refer to tibial cartilage segmentation for comparison.

Fig. 1: General concept of our two-stage classifier, where
β1 denotes parameters used to tune the first stage classifier
for maximum sensitivity, while the parameters β2 are used to
tune the second stage for best segmentation performance. The
labels L = 1 and L = −1 refer to cartilage and background
voxels, respectively.

1) Training data and features: Training data was ex-
tracted using 25 scans, which are exactly the same scans
as used by state-of-the-art method [6]. Firstly, a region of
interest from each MRI scan was extracted. The volume
of region of interest is 30% of the volume of the MRI
scan. Each MRI scan has around 6.85 million voxels with a
region of interest of approximately 2 million voxels. As the
background points are too high in number, we sample the
background from the ROI and take all the cartilage voxels in
our training data. The sampling is performed very densely in
the region close to the cartilage, rarely in the region far from
the cartilage and the sampling probability varies linearly
between two values. For femoral cartilage, the number of
all the cartilage points (from 25 scans) is 295,403 while the
number of background points is 2,408,864. In our earlier
study on tibial cartilage, the number of tibial cartilage and
background points were 119,684 and 1,892,696 respectively.
As we can see, femoral cartilage is considerably bigger than
the tibial, resulting in higher number of cartilage as well
as background data points. We use the same set of 178
features which were used by Folkesson et. al. [6] as candidate
features. Folkesson et. al. used features selection to find a
smaller set of features in order to improve the performance.

2) The two stages for femoral cartilage segmentation:
Stage one of our classifier is similar to the state-of-the-art
one-stage kNN of Folkesson et. al. [6]. However, they have
different aims. The one-stage kNN is trained to select the
value of k, a smaller set of features using a feature selection
method, and a posterior threshold t that deals with the large
class imbalance to achieve best possible segmentation results.
Let pb be the posterior probablitity of a voxel being in
background class, then the voxel is classified as background
if pb > t and as cartilage otherwise. The features selected in
case of tibial and femoral cartilage are slightly different. The
number of selected features for tibial cartilage was 36 while
that for femoral cartilage it was 42. The main difference
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between kNN used by [6] and our stage-one is the purpose
of the classifier. We adjust t in order to achieve maximum
sensitivity or minimum false positives. The value of k used
by Folkesson et. al. was 100 for both the cartilage and we
also use the same value of k.

Stage two of our classifier is an SVM with Gaussian
kernel. We employed LIBSVM [16] for training the SVM.
The training data comprised the points labeled as cartilage
in stage-one. Although stage one used only a selected subset
of features, in the second stage the SVM used all the 178
features. In case of the tibial cartilage, we performed nested
grid search using cross-validation (splitting the available
training data) as performance criterion. We searched for a
good combination of kernel width parameter and regular-
ization (commonly denoted by γ and C) on a 13 × 29
grid. After finding the best of these 377 combinations, we
placed a second narrow 3 × 3 grid around the optimum
value of C and γ. At this point we introduced a weight
ratio parameter W ∈ {1.0, 1.1, 1.2, . . . , 1.8}, which made
it possible to select different regularization parameters. The
final regularization parameters of cartilage and background
class were C ·W and C respectively.

Performing grid search in a big space of 377 combinations
was time consuming even with a lot of computing resource.
However, when performing the grid search for the second-
stage of femoral cartilage segmentation, we placed just a
3× 3 grid around the same pair (C, γ) which was found to
be optimum during grid-search for the second-stage of tibial
cartilage segmentation.The good results that we achieved
in case of femoral cartilage segmentation, using the hyper-
parameters similar to what we learnt for tibial cartilage
segmentation, show the robustness of our two-stage classifier.

C. Speeding-up SVM training: Online learning vs. batch
leaning with low accuracy

There were more than 700,000 training data points more
in case of femoral cartilage than in case of tibial. On top
of that, the first-stage of kNN performed slightly worse in
the case of femoral cartilage segmentation when compared
to tibial cartilage segmentation, thus the specificity achieved
for maximum sensitivity was lower. Thus, the percentage of
points screened in the first stage of femoral segmentation was
lower than in the tibial case. In fact, the number of training
data points for second stage SVM in case of femoral was
688,128, while in case of tibial the second stage SVM had
to handle only 262,142 data points. Thus, model selection
and final training gets very time consuming.

We consider non-linear SVMs. Training the machines
amounts to solving a quadratic program (QP) having time
complexity Ω(`2) [17]. We use iterative sequential minimal
optimization, and to speed up SVM training for the femoral
cartilage classification, we loosened the stopping criterion
from ε = 0.001 to ε = 0.5. We use the common stopping
criterion as discussed, e.g., in [18]. Let α1, . . . , α` denote
the coefficients of the SVM dual objective function f and
let gi denote the partial derivative of f with respect to αi.

TABLE I: Comparison of classifiers applied for femoral
cartilage segmentation. DSC stands for the dice similarity
coefficient. The proposed cascaded classifier is referred to
as two-stage 2-stage, the state-of-the-art reference algorithm
is 1-stage. All values are mean over 114 scans.

Classifier DSC Accuracy Sensitivity Specificity
2-stage 0.8115 96.3234% 80.8236% 98.0760%
1-stage 0.7984 96.0821% 79.7736% 97.8938%

Then we stop when

max

(
max

αi<C,yi=1
−gi, max

αi>0,yi=−1
gi

)
−

min

(
min

αi<C,yi=−1
gi, min

αi>0,yi=1
−gi

)
falls below the threshold ε.

An alternative to this approach is using an online SVM
such as LASVM [19]. However, tuning ε is simpler, and we
found it to produce more accurate solutions than LASVM
within the same time budget in our application.

We also conducted experiments with LASVM to solve the
problem in just one stage using all the 178 features and all the
training data points. However, we observed no improvement
in performance and too long training times.

IV. EVALUATION AND RESULTS

We evaluate our classifier on a hold-out set of 114 test
scans. We used Dice Similarity Coefficient to evaluate the
segmentation performance,

DSC(A,B) =
2(|A ∩B|)
|A|+ |B|

where A and B are manual and automatic segmentations.
In table I we compare results obtained by our two-stage
method with the state-of-the-art one stage kNN. Our method
performed statistically significantly better than the one-stage
kNN in terms of DSC and accuracy (Wilcoxon rank-sum
test, p < 0.05), with both better sensitivity and specificity.

We also evaluated interscan segmentation reproducibility
on 31 pairs of scans, each pair obtained within a week. The
same radiologist segmented both the scans of each pair. The
evaluation was based on the RMS-CV score calculated as
follows. Let V is and V ir be cartilage volumes obtained from
scan and re-scan of the ith pair. We calculate the coefficient
of variation for ith pair

Civ =

√
2(|V is − V ir |)
V is + V ir

which is the same as the ratio of the standard deviation to
the mean of two volumes. The RMS-CV score is given as√∑31

i=1 C
i
v
2
/31. The lower the RMS-CV score, the better

the reproducibility. Table II summarizes the results obtained,
showing that our method performed better than the radiolo-
gist as well as the state-of-the-art method.
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TABLE II: Comparing interscan femoral cartilage segmen-
tation reproducibility on 31 pairs of scans

Method RMS-CV
2-stage 0.0785
1-stage 0.0810
Manual 0.1140

(a) manual (b) two-stage

Fig. 2: Slice taken from a 3D MRI scan segmented by (a)
a radiologist and (b) our two-stage method. The slice was
chosen to demonstrate that, although the proposed method
outperforms the state-of-the algorithm [6], there is still room
for improvement by (simple) post-processing.

Figure 2 shows a slice segmented by the radiologist and
our method. A slice is taken from the 3D segmentation
for visualization purpose (actually, radiologists segment the
scans in a slice by slice manner). The resulting segmentations
suggest that some post-processing can further increase the
segmentation results.

V. DISCUSSION

The proposed two-stage classification method is a general
tool for scenarios in which the number of training data points
is huge and the classes are unbalanced. These scenarios are
often found in medical imaging applications and thus such
a classifier is particular useful in this field. Its application
for segmenting articular cartilage from low field knee MRI
scans was very successful.

The two-stage method outperformed the state-of-the-art
one-stage kNN and also achieved better interscan segmenta-
tion reproducibility when compared to one-stage kNN and
the manual segmentations done by a radiologist. However,
the testing time of our method was 30-35% more compared
to the one-stage kNN for femoral cartilage. For increasing
the speed of the SVM training, we found no advantage in
using online SVMs over simply reducing the accuracy of
batch SVM training (by loosening the stopping condition
in the quadratic program solver). Replacing the two-stage
classifier by a single online SVM did not lead to better
performance given our time budget.
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