
 

 

 

 

Abstract— Distinguishing malignant lung nodules from 

benign nodules is an important aspect of lung cancer diagnosis. 

In this paper, we propose an automatic method to classify lung 

nodules into four different types, i.e. well-circumscribed, 

juxta-vascular, juxta-pleural and pleural-tail. Additionally, since 

the morphology of lung nodules forms a continuum between the 

different types, our proposed method is superior to previous 

methods that classify single nodules into a single type. First, a 

weighted similarity network is constructed based on the SVM 

with probability estimates, turning the 128-length SIFT 

descriptor to a 4-length probability vector against the four 

types. Then, the classification of nodules while identifying those 

with overlapping types is made using the weighed Clique 

Percolation Method (CPMw). We evaluate the proposed method 

on low-dose CT images from ELCAP. Our results show that 

there is more overlap between well-circumscribed and 

juxta-vascular, and between juxta-pleural and pleural tail. Also, 

quantitative comparisons among various methods demonstrate 

highly effective nodule classification results by identifying the 

overlapping nodule types. 

 

Index Terms— Lung nodules, Classification, SVM, CPMw, 

Overlap. 

  

I. INTRODUCTION 

Lung cancer is a major worldwide problem that seriously 
endangers people’s lives. The survival of patients with lung 
cancer is strongly dependent on accurate and early diagnosis 
[1]. Approximately 20% of medical cases with lung nodules 
represent cancers [2]; therefore distinguishing malignant 
nodules from benign nodules is essential for the detection of 
lung cancer.  

Recently, image-based diagnosis in clinical settings has 
focused on the automated computation of quantitative 
measures to investigate the correlation among different types 
of lung nodules. According to the medical literature [3], lung 
nodules that are intra-parenchymal are more likely to be 
malignant than those attached to vessels or pleura, so 
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classifying lung nodules into categories and aetiology is quite 
beneficial to pathologists. 

To date, all works on classifying lung nodules into the four 
types tend to annotate an individual nodule with a single label, 
i.e. each nodule can only belong to one type. However, since 
the morphology of lung nodules forms a continuum, it may be 
hard, or even impossible, to clearly distinguish between 
different types. Although we can recognize some clear 
differences in shape and texture between different categories 
[4], there is still significant overlap between these categories. 
Hence, it is of great value to find these overlapping ones in 
order to improve the accurateness of the others. 

In the light of this, we present a novel method to classify 
lung nodules and identify those nodules of intermediate or 
indeterminate type. The structure of the paper is organized as 
follows: Section 2 discusses the related works; Section 3 
illustrates how our proposed method works; then, the 
experiment procedure and results are discussed in Section 4; 
finally, the conclusion is given in Section 5.  

II. RELATED WORK 

Lung nodules are typically spherical in shape; however, 
they are usually distorted by the surrounding anatomical 
structures, like vessels or pleural surface [5]. At present, the 
classification from [6], which divides them into four types, is 
the most popular criterion for lung nodule classification. The 
four types are: well-circumscribed (W) with the nodule 
located centrally in the lung without any connection to 
vasculature; vascularized (V) with the nodule located 
centrally in the lung but closely connected to the neighboring 
vessels; juxta-pleural (J) with a large portion of the nodule 
connected to the pleural surface; and pleural-tail (P) with the 
nodule near the pleural surface connected by a thin tail. 
Sample images are shown in Fig.1, with the nodule in the red 
circle. 

 

Figure 1.  Sample images from the classification [5]. Well-circumscribed, 

vascularized, juxta-pleural and pleural-tail respectively from left to right. 

To categorize individual structural or functional lung 
nodule images into these four groups, there has been recent 
interest in machine learning methods. As one of the ten 
classical methods in data mining, support vector machine 
(SVM) in particular enjoys great popularity among 
researchers [5]. SVMs are trained using some well-structured 
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data, e.g. feature vectors extracted by Scale-invariant feature 
transform (SIFT) algorithm [7]. Then, new images are tested 
against the model derived from the training process and 
classified as members of a particular type.  

Much work has been done using SVM, demonstrating that 
SVM can provide more specialized and accurate solutions to 
our goal [8][9][10][11]. All previous work, however, has used 
the SVM classification as the end result without further 
analysis of the overlapping structure. Fortunately, the 
technique named Clique Percolation Method (CPM) which 
aims to discover the overlapping structure of the network 
gives us an insightful way to handle this problem. In 
particular, it is weighted CPM (CPMw) [12] that we are 
interested in when dealing with the weighted network. SVM 
with probability estimates [13] provides the prerequisites for 
constructing the network for CPMw. 

III. METHODS 

A.  Overlapping structure 

The transformation of lung nodules proceeds gradually, 
which makes classification difficult to clearly define. 
According to the structure of the above four types introduced, 
taking well-circumscribed and vascularized nodules as an 
example, there are always some nodules between ‘without any 
connection to vasculature’ and ‘with significant connections 
to the neighboring vessels’. Fig.2 shows an instance between 
well-circumscribed and vascularized nodules. The nodules 
located in left and right are easily recognized, but the ones in 
the middle are difficult to call. The same situation also exists 
between juxta-pleural and pleural-tail nodules because of the 
‘large proportion’ and ‘thin tail’. 

Identifying such intermediate nodules is beneficial to 
accurately classify the clear ones. It is an improvement on 
other rough classification methods that classify one nodule 
into a single type, such as the SVM classification that we use 
in the first stage of our proposed method, and K-means, which 
we use as the control algorithm in our experiment. The 
nodules located in the interactions among different types are 
usually the misclassified ones in these methods. By 
identifying these nodules, the classification of the others 
(shown in left and right in Fig.2) can be highly improved. 

 

Figure 2.  An example of overlapping analysis between well-circumscribed 

and vascularized nodules. Those located in left part are well-circumscribed, 

in right part are vascularized, and in the middle are the overlapping nodules. 

B. Constructing weighted network with SVM 

At the first stage of our proposed method, SIFT descriptors 
[7] are extracted for all nodules, and the one nearest the 

centroid is selected as representative of the nodule. After that, 
the usual SVM classification procedure is performed with the 
version that can estimate the probability [13] of descriptor d 
belonging to class i.  

After the prediction step, for any descriptor d, we obtain 
the probability pi against the k classes,  

kidiyPp
i

,...,1),|(  .                     (1) 

Finishing the SVM classification, the original 128-length 
SIFT descriptor is projected to a 4-length vector. This 
dimension-reduction process yields a shorter descriptor to 
represent a nodule. While filtering the noise artifacts, the 
projection also achieves a more meaningful characteristic to 
our goal of classification. Unlike other projection methods, 
such as PCA [14], this approach produces a 4-length vector in 
a space whose dimensions are nodule types. If two nodules are 
close together in such a space, they are more likely to be 
type-similar.  

Once the new descriptors for each of the nodules are 
generated, cosine value as the similarity measure is 
implemented between two nodules, in order to test whether 
distinctions are in fact apparent between various nodules. For 
any nodule nod, the type-based vector can be represented as 
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where pi is defined in Eq.1. The similarity between two 
different nodules is derived by computing the cosine value, i.e. 
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Finally, the weighted similarity network, in the form of a 
matrix, can be constructed with the nodes representing the 
nodules and the weight of each link representing the similarity 
between the connected nodules. Fig. 3 is a sample showing the 
construction of a network of four nodules. Notice that we 
leave the self-similarity equal to 0 in order to fulfill the 
requirement of CPMw. 

 

Figure 3.  A sample shows the weighted similarity network. The value is the 

cosine similarity between the two nodules based on the type descriptors.  

C. Clustering with CPMw 

The second stage of our method is to use CPMw to further 
cluster the nodules based on the outputs of SVM. CPMw [12] 
is the extension of CPM [15], which was originally used for 
unweighed networks. 

Given the definition of k-clique, i.e. a subset of k nodes in 
which all k(k-1)/2 possible pairs are connected, CPMw 
computes the k-clique adjacency. In k-clique adjacency, the 
value indicates whether the two k-cliques share (k-1) nodes, 
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called adjacent k-cliques. Traversing the k-clique adjacency, 
the connected k-cliques derived are treated as modules, also 
called clusters. A k-clique is included into one cluster if it has 
intensity larger than the fixed threshold value I. The intensity 
of the k-clique, C, can be written as follows based on the 
weight of each link: 
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where Sim is defined in Eq. 3. By proceeding in such a way, 
different clusters can share nodes, which are the overlapping 
nodules in our work, because a single node can belong to 
several different k-cliques.  

CPMw has two parameters: k and I, the clique size and the 
intensity threshold. The optional choice of k and I gives the 
richest structure of weighted module. Suppose the link weight 
of the network ranges from w1 to wn (i.e. w1 < wn), then a 
simple suggested method in [10] is to start with the highest 
value of I=wn, and then decrease I until the ratio of the two 
largest module sizes n1/n2 reaches 2. k is selected according to 
the whole structure of the achieved weighted modules. 
Usually, the more balanced the structure is, the better. For our 
experiment, we set I =0.92 and k = 5. Except for the above two, 
CPMw does not need any other predefined parameters, such as 
the number of the output clusters. This makes CPMw more 
flexible and robust under different circumstances, especially 
when the network is not well organized. 

Finally, further combining operations are performed in 
order to obtain the four type-groups. Each cluster is labeled 
with the type whose frequency is the highest according to the 
output of SVM classification. Those clusters labeled with the 
same type are grouped together. In this way, four groups with 
a more balanced classification structure than the number-fixed 
methods can be derived.  

IV. EXPERIMENT AND RESULTS 

A. Datasets and experiment procedure 

In this study, we use the publicly available Early Lung 
Cancer Action Program (ELCAP) database [16] to illustrate 
the advantages of the proposed method. The ELCAP database 
contains 50 sets of low-dose CT lung scans with 379 
unduplicated lung nodules annotated by positions, which are 
further divided into the four specified types (W-15.04%, 
V-16.09%, J-30.34%, and P-38.52% respectively).   

Comparisons are done within the three methods: the 
proposed CPMw, SVM, and K-means. CPMw is our proposed 
method. SVM uses the raw SIFT descriptors. K-means is 
applied in two ways. The first uses K-means to classify the 
nodules on raw SIFT descriptors, and the other is based the 
probability estimates.  

During preprocessing, a window of 30 30 is extracted 
with the annotated nodule in the center [5]. Training sets are 
randomly selected 10 times at a particular percentage (20% to 
70%), and the average classification rates of all nodules are 
computed for each of the percentages.  

B. Results 

Samples from part of the overlapping nodules are shown in 
Fig. 4. Red rectangles mark out the overlapping nodules. They 
are ranked according to frequency of appearing in the 
intersections for several random training sets. The ones in the 
center have the highest possibility of uncertainty over which 
exact type it is. The possibilities of other nodules gradually 
become smaller to the sides. Totally, most of the overlapping 
nodules are located between well-circumscribed and 
vascularized, and between juxta-pleural and pleural-tail. Parts 
of this classification result are shown in the first and the 
second row. Also, there are many overlapping nodules 
between well-circumscribed and pleural-tail shown partially 
in the third row.  

 

Figure 4.  Samples of overlapping nodules extracted from the proposed 

method. The three rows (from top to bottom) show well-circumscribed and 
vascularized, juxta-pleural and pleural-tail, and well-circumscribed and 

pleural-tail respectively. The other three combinations are not shown here 

because fewer overlapping nodules are found. The ones in the red rectangles 
have the highest overlapping frequency for all training datasets. 

TABLE I.  PRECISION OF EACH TYPE OF THE NODULES FROM SVM AND THE 

PROPOSED METHOD. 

Training 

Percent 
Method 

Categories 

Well-C Vascular Juxta-P Pleural-T 

20% 
SVM 0.722  0.699  0.799  0.740  

CPMw 0.720  0.668  0.811  0.783  

30% 
SVM 0.777  0.752  0.857  0.768  

CPMw 0.759  0.740  0.798  0.813  

40% 
SVM 0.796  0.762  0.863  0.836  

CPMw 0.764  0.749  0.866  0.839  

50% 
SVM 0.850  0.806  0.896  0.858  

CPMw 0.838  0.812  0.873  0.869  

60% 
SVM 0.888  0.838  0.919  0.898  

CPMw 0.842  0.834  0.898  0.915  

70% 
SVM 0.921  0.891  0.931  0.935  

CPMw 0.904  0.889  0.943  0.927  

 

Table I shows the precision of the four types using our 
proposed method and SVM based on SIFT descriptors method. 
The precisions for well-circumscribed nodules decrease for all 
training percentages. This change follows the phenomena 
above that more overlapping nodules are found in the 
well-circumscribed category due to the fact that they overlap 
both vascularized and pleural-tail ones. The average 
precisions of the two methods are shown in Table II. With the 
better overall recall rates (shown in Fig. 5), the precision of 
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CPMw is still close to that of SVM although the overlapping 
nodules are located in more than one type. 

Fig.5 demonstrates the comparison of overall 
classification rates (also seen as recall rates) of nodules among 
CPMw, SVM based on SIFT descriptors, K-means based on 
SIFT descriptors, and K-means based on probability 
estimates. The comparisons can be analyzed from the 
following aspects: 

TABLE II.  THE AVERAGE PRECISIONS COMPARING CPMW AND SVM 

METHODS 

Training 

Percent 
20% 30% 40% 50% 60% 70% 

method 

SVM 0.740 0.788 0.814 0.852 0.886 0.919 

CPMw 0.748 0.783 0.805 0.848 0.872  0.916 

 

 (1) K-means based on SIFT descriptors v.s. K-means 
based on SVM probability estimates. The significant 
improvement using K-means based on SVM probability 
estimates proves that the probability vectors upon nodules 
types are more meaningful than the raw SIFT descriptors 
when we try to classify the nodules into types. Hence, by 
further analysis upon SVM output, we can get better 
classification results. 

(2) CPMw v.s. K-means based on probability estimates. 
Following the above analysis, even though both of these 
methods are based on SVM probability estimates, CPMw 
always gives better rates than K-means. This comparison 
illustrates that CPMw is more suitable for the aim of 
classification with SVM probability estimates. Also, as the 
percentage of training set increases, the gap between these two 
methods gradually becomes smaller due to the fact that more 
overlapping nodules are found. 

(3) CPMw v.s. all others. The higher classification rate of 
CPMw demonstrates that a better classification can be 
achieved by identifying the nodules located in between 
different types. In all, our proposed method does improve the 
classification performance by further analysis upon SVM 
output and identifying the overlapping nodules.  
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Figure 5.  The overall classification rates of the four types of nodules 

comparing various methods. 

V. CONCLUSION AND FUTURE WORKS 

This paper presents a new method for lung nodule 

classification. Probability estimates upon the nodule type are 

firstly computed using the SVM for each nodule. Then, a 

nodule similarity network is constructed with the resulting 

probability vectors. Further overlapping analysis is 

performed using CPMw. Our evaluation on the ELCAP 

database shows higher performance than the rough 

classification. 

Future directions are geared towards further utilizing more 

suitable descriptors for classification against types, instead of 

the raw SIFT descriptors. Also, we aim to incorporate other 

similarity techniques to the proposed approach and to obtain 

the best generalized method. 
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