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Abstract— This paper describes a computer-aided diagnosis
(CAD) method to classify diffuse lung diseases (DLD) patterns
on HRCT images. Due to the high variety and complexity of
DLD patterns, the performance of conventional methods on
recognizing DLD patterns featured by geometrical information
is limited. In this paper, we introduced a sparse representation
based method to classify normal tissues and five types of
DLD patterns including consolidation, ground-glass opacity,
honeycombing, emphysema and nodular. Both CT values and
eigenvalues of Hessian matrices were adopted to calculate local
features. The 2360 VOIs from 117 subjects were separated into
two independent set. One set was used to optimize parameters,
and the other set was adopted to evaluation. The proposed
technique has a overall accuracy of 95.4%. Experimental results
show that our method would be useful to classify DLD patterns
on HRCT images.

I. INTRODUCTION

Diffuse lung diseases (DLD) include many abnormality
that spread out in large areas of lung. The high-resolution
CT (HRCT) is able to provide an accurate assessment of
pulmonary patterns, so it has been considered to the most
important modality for diagnosis of DLD in recent years.
However, the diagnosis of DLD on HRCT images is a
difficult task for radiologists. There is not an objective
identification of pulmonary patterns in clinical protocols, and
the interpretation of HRCT images depends on radiologists’
experiences. Besides, the huge number of CT slices make
a big burden on radiologists. Therefore, a computer-aided
diagnosis (CAD) tool is required to provide the radiologists
with a ”second opinion” for the diagnosis of DLD.

In the past ten years, many CAD systems have been
developed to automatically analyze and classify DLD pat-
terns. Most conventional methods paid attention to design
discriminative features, such as topological texture features
[1], statistical texture features [2] and local binary patterns
[3]. Although the texture features have excellent performance
on CAD of DLD, it is still difficult to classify pulmonary
patterns with inhomogeneous texture. Therefore, the geo-
metrical information is often adopted to design more powful
features combined with texture features. In published work
[4], the pulmonary patterns were determined by six kinds of
physical measures, three on CT values (mean and standard
deviation of CT values and air density components) and
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three on geometric information (nodular components, line
components and multilocular components).

To improve the performance of classifying DLD pat-
terns, researchers also employed clustering methods to gen-
erate discriminant features, for example, the cluster-based
signature-matching [5]. Assuming that the same types of
cases have similar distribution of local features, the unique
signature of VOI is defined as the centroid and histograms
of clusters constructing by k-means. And the earth mover’s
distance (EMD) approach is applied to measure the similarity
between two signatures. In order to save computing cost, the
signatures of cases with the same class are re-clustered to
generate a canonical signature. So the signatures of testing
VOIs can be compared with canonical signatures instead
of all training signatures in the classifier. Although the
clustering of features has potential to accurately describe
the difference between DLD patterns, the performance of
classification would be affect by the accuracy of clustering
method.

Recently more and more researchers have reported that the
sparse representation based approaches can be successfully
applied in the CAD [6, 7]. The main idea of sparse repre-
sentation is to approximate samples by a linear combination
of little number of key features (atoms) selected from an
overcomplete dictionary with a lower re-construction error.
The overcomplete dictionary allows a flexible representation
of samples. So the important information can be captured
from the samples while discarding irrelevant details. Besides,
the image patches can also be seemed as sparse signals
[8]. In this paper, we combined local features and a sparse-
representation model to classify normal tissues (NOR) and
five types of DLD patterns including consolidation (CON),
ground-glass opacity (GGO), honeycombing (HCM), em-
physema (EMP) and nodular (NOD). Fig. 1 illustrates the
images of six types of pulmonary patterns. According to our
knowledge, there is no work to combine local features and
sparse representation on analyzing DLD patterns. Comparing
to the work published in [6], which also applied a sparse-
representation model to analyze DLD patterns, the main
differences are listed as follows: 1. More kinds of pulmonary
patterns; 2. 3D VOIs instead of 2D ROIs; 3. Local features
based on CT values and eigenvalues of Hessian matrix;
4. Different method of generating image descriptors for
classification.

II. METHOD

We proposed a sparse representation based method to
classify six types of pulmonary patterns on HRCT images.
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Fig. 1. Example of six pulmonary patterns in HRCT: consolida-
tion(CON), ground-glass opacity(GGO), honeycombing(HCM), emphy-
sema(EMP), nodular(NOD) and normal tissue(NOR)

Fig. 2 gives the framework of proposed method. Firstly, the
local features were extracted from the VOIs. Secondly, in
the sparse-representation model, an overcomplete dictionary
was learned using the feature vectors from the training data,
and the descriptors were generated as the input of classifier
according to the dictionary and original feature vectors.
Finally, the descriptors of six types of pulmonary patterns
were recognized by a SVM classifier.

Fig. 2. The framework of proposed method;

A. Extraction of local features

From Fig. 1, it can be found that the NOD and HCM are
mainly characterized by 3D shape-information, and the CON
and EMP are featured by CT values. Considering that the
eigenvalues of Hessian matrix have been used to represent
the shape of objects [9], it was adopted to compute the local
features with CT vales in the research. The calculation of
local features is illustrated in Fig. 3. Firstly, a cube-shaped
patch was generated at each sampling point of VOI, and the
center of patch was located at the sampling point. Secondly,
in order to analyze the geometric information of patterns, the
eigenvalues of Hessian matrix were calculated on each voxel
within the patches. Let λ1, λ2, λ3 be the eigenvalues of Hes-
sian matrix. The eigenvalues were arranged in a descending
order (λ1 ≥ λ2 ≥ λ3) and formed three new patches. Finally,
four kinds of statistical measures were calculated on the four
patches: mean, standard deviation, skewness and kurtosis. In
experiments, the step of sampling points and the size of VOIs
were set to 4×4×4 and 32×32×32 respectively. So there are
9×9×9=729 sampling points in one VOI. The size of patch
is a parameter, which was optimized in experiments.

B. Sparse-Representation Model

After extracting local features, we adopted a sparse-
representation model to generate descriptors as the input of
classifier. Given m feature vectors y ∈ Rn and the corre-
sponding representation coefficients a ∈ Rk. The collection
of m feature vectors and representation coefficients form two

(a)

(b)

Fig. 3. The four extraction of local features (a) Grid sampling on the VOIs;
(b) Calculating 4 statistical measures on each patch.

data matrix Y ∈ Rn×m and A ∈ Rk×m respectively. Let
D ∈ Rn×k, n ≪ k be an overcomplete dictionary matrix,
the sparse representation can be formulated as

min
y

||y||0 subject to||Y −DA||22 ≤ ε (1)

where the ||.||0 means the sparsity of coefficient (number of
non-zero entries in the vector).

In this work we adopted the K-SVD algorithm to learn
the dictionary because of its simplicity and highly efficiency
[10]. Starting from initializing by a random dictionary matrix
with normalized atoms, the dictionary is learned by iterative
optimizing the coefficients (with dictionary fixed) and updat-
ing dictionary (with coefficients fixed), until ||Y −DA||22 ≤
ϵ. In the stage of optimizing the coefficients, it is suggested to
use a pursuit algorithm. We adopted the default solver in K-
SVD, Orthogonal Matching Pursuit (OMP) in this research
[11]. In the stage of updating the dictionary, the columns
of dictionary matrix (atoms) are sequentially modified and
normalized while keeping other atoms fixed. To update the
atom di, firstly the error matrix Ei is calculated

Ei = Y −DA+ dia
i
T (2)

where ai
T is the i-th row of A. Secondly, the group of

examples using the atom di are found. Defining ωi = {j|1 ≤
j ≤ m,ai

T (j) ̸= 0}, the error matrix is restricted by selecting
the columns corresponding to the ωi. Finally, the singular
value decomposition (SVD) is adopted to decompose the
restricted error matrix

ER
i = U∆V (3)

and the atom di is updated by u1.
Using the dictionary, the original local features were rep-

resented by the corresponding sparse coefficient vectors, the
same with the sparse coding stage in learning dictionary. We
also adopted the OMP in this step. Then a spatial ”pooling”
was performed to combined the representation coefficients
from same VOI into a descriptor vector. The descriptors
should preserve important information of VOIs while missing
irrelevant details. Two popular choices, the max pooling
and average pooling were considered in this research. In
the sparse-representation model, the number of atoms and
sparsity of coefficients are two parameters determined by
experiments.
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C. Classification

Finally the descriptors generated by the sparse-
representation model were classified by a SVM classifier.
We used a version named LIBSVM [12]. Considering
that the classification based on linear kernel can achieve a
competitive performance and lower computation cost than
the nonlinear kernels in the sparse representation [8], the
LIBSVM was employed with a linear kernel. The kernel is
defined by Eq.4

Linear kernel : K(xi, xj) = xT
i xj (4)

where xi and xj are both descriptors. One of the most pop-
ular techniques, one-against-other was applied by LIBSVM
to extend the binary SVM classifier for the solution of multi-
class tasks [13]. The classifier has one parameter: soft-margin
penalty C. We optimized the parameter in the training stages.

III. EXPERIMENTS AND RESULTS

A. Data

We obtained 117 scans from 117 subjects from our coop-
erative hospital. All scans were acquired by Toshiba Aquilion
16-row multi-slice CT when edge-enhanced filtering was not
applied. A tube voltage of 120kVp and current of 250mAs
were used. The resolution of scans is 512×512, and the in-
plane resolution is about 0.6mm. The slice thickness is 1mm.
The scans were reviewed by three experienced radiologists,
and the VOIs were constructed according to the following
procedure: 1. One radiologist was asked to review all scans,
and a maximum of three axial slices from each scan were
selected. Only one type of pattern dominantly exists on the
selected slice. 2. The other two radiologists were asked to
review the results of the first radiologists again, and saved
agreed slices for the next step. 3. All three radiologists were
asked to marked the regions of patterns on the selected slices
respectively. 4. The common regions marked by all three
radiologists were extracted. 5. The grids with a size of 32×32
were overlaid on the determined regions, and square-shaped
patches were built. For patches with five DLD patterns, the
specific type of pattern should spread out in a minimum of
70% of total area. 6. The 32×32×32 VOIs were constructed
according to the patches. The patches were treated as the
central-axial slice of VOIs.

In the experiment, we divided the VOIs into two sets
nearly in half. One set was adopted as the training data set,
which was used for tuning parameters. The other set was
employed to evaluate the performance. There is no cross-
subject in the two sets. Because the area of pulmonary
patterns marked by radiologists on the slices are not the
same, the number of VOIs of the same pattern in the two
sets would be different. The number of VOIs of each type of
patterns for training and test data are summarized in Table I.

B. Experimental Setting

For the proposed method, there are mainly four kinds of
parameters optimized in the training stage: the size of cube-
shaped patches, the number of atoms and the sparsity of

TABLE I
NUMBER OF VOIS IN THE TRAINING AND TEST SET.

Training data Test data
CON 49 45
GGO 170 160
HCM 221 204
EMP 323 275
NOD 113 92
NOR 435 273
Total 1311 1049

coefficients, and the parameter related to the classifier. We
tuned the values of patch size from 2×2×2 to 3×3×3 with a
step of 1×1×1, the number of atoms from 500 to 3000 with
a interval of 500, and the sparsity from 2 to 14 with a step
of 2. All of these parameters were optimized simultaneously
by a 20-fold cross-validation test on the training set. Then
the proposed method with the determined parameters was
evaluated on the test set.

The proposed method was compared with two kinds of
state-of-the-art baseline methods, which was called SpeDes-
Fea [4] and CanSigEMD [5] respectively in this paper. The
way of tuning parameters was the same with the proposed
method.

• SpeDesFea The pulmonary patterns were recognized by
six types of specially designed features, including mean
and standard deviation of CT values, air density compo-
nents, nodular components, line components and mul-
tilocular components. An three-layered artificial neutral
networks (ANN) with back-propagation algorithm was
adopted as the classifier. The implementation of this
method was the same as [4].

• CanSigEMD This method applied the k-means algo-
rithm to calculate clusters’ centers of each VOI, and
the EMD method was used to measure the similarity
between the signatures. The nearest neighbor (NN) was
adopted as the classifier. The CanSigEMD has only
one parameter, the number of clusters. Because it is
suggested to avoid too large value, we tried the number
of clusters from 10 to 50 with a interval of 10.

C. Results and Discussion

The overall accuracies of three kinds of methods are sum-
marized in Table II. It can be seen that the proposed method
provides the best overall accuracy of classification. Table
III gives the statistical differences between the proposed
method and baseline methods by McNemar’s test. All of
the p values are less than 0.00001. Fig. 4 compares the
recognition of each pulmonary pattern by the three methods.
The classification of texture-based patterns is relatively better
than shape-based patterns by the two baseline-methods.
For the SpeDesFea method, we thought it may attribute
to the results of detecting nodular, linear and multilocular
component, which is a significant important and difficult
work in the CAD. In the CanSigEMD method, only CT
value was considered in the calculation of features. So the
shape-based patterns may be confused with texture-based
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patterns. Besides, the accuracy of k-means would affect the
recognition of pulmonary patterns. By the proposed method,
the recognition rates of all patterns are higher than 90%.
It is demonstrated that the proposed method is able to
well recognize both texture-based patterns and shape-based
patterns. Table IV gives the confusion table of proposed
method. We considered there may be two reasons. First, we
compute the local features on CT value and eigenvalues of
Hessian matrices, which can well represent the textural and
geometrical information of pulmonary patterns. Second, by
the sparse-representation model, the descriptors can retain
crucial information of local features while discard the irrel-
evant details. So it is able to better describe the distribution
of local features.

TABLE II
COMPARISON OF THREE KINDS OF METHODS

Method Accuracy
Proposed method 95.4%

SpeDesFea 75.1%
CanSigEMD 64.8%

TABLE III
STATISTICAL DIFFERENCES BY MCNEMAR’S TEST

Methods p value
Proposed method vs SpeDesFea < 0.00001

Proposed method vs CanSigEMD < 0.00001

Fig. 4. Recognition of six kinds of pulmonary patterns by the three methods

TABLE IV
CONFUSION TABLE OF PROPOSED METHOD

Estimated Types
True

Types
CON GGO HCM EMP NOD NOR Sensitivity

CON 45 0 0 0 0 0 100%
GGO 0 152 0 1 7 0 95.0%
HCM 0 1 203 0 0 0 99.5%
EMP 0 0 1 255 2 17 92.7%
NOD 0 3 0 0 83 6 90.2%
NOR 0 2 0 2 6 263 96.3%

Precision 100.0% 96.2% 99.5% 98.8% 84.7% 92.0%

IV. CONCLUSIONS
In this research, we proposed a sparse representation

based method to classify six types of pulmonary patterns.

The sparse-representation model composed of three steps:
dictionary learning, sparse coding and spatial pooling. After
extracting the local features, the dictionary was learned
by performing the K-SVD and OMP iteratively until the
reconstruction error smaller than the stopping ruler. Then the
original local features were represented by OMP using the
learned dictionary. Finally, the spatial pooling was adopted
to combined the representation coefficients of same VOI into
a descriptor as the input of a SVM classifier. The proposed
method has a overall accuracy of 95.4%, and the recognition
rates of all patterns are higher than 90%. Experimental results
show that our method is superior to other two baseline
methods. We will try other sophisticated features and sparse
coding methods in future research.
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