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Abstract— Cerebral arteriovenous malformation (AVM)
presents a great health threat due to its high probability
of rupture which can cause severe brain damage or even
death. For planing the embolization procedure of an AVM, the
knowledge of the accurate location and size of the malformation
is of utmost importance. We propose in this paper a novel AVM
detection method and a blood vessel tree analysis approach
using ordered thinning-based skeletonization. The main con-
tributions are: (1) a new method of profile volume calculation
to replace the distance labels in ordered skeletonization; (2)
an automatic method for AVM detection and extraction, with
accurate positioning and malformation size estimation. The
main idea in our work is use the structural (anatomical) vessel
differences and the inhomogeneities in distribution of pixel gray
values to locate and extract the AVM. The algorithm takes a
segmentation result as an input to perform AVM delineation.
The algorithm determines the AVM region automatically, with-
out any user interaction and independently of the segmentation
algorithm used. The proposed approach is validated on brain
blood vessel CTA images before and after embolization. The
results obtained using the Dice coefficient comparisons, the
volume percent error and the AVM center position show high
accuracy of our method and indicate potentials for use in
surgical planning.

I. INTRODUCTION

Inferring the structure and position of blood vessels from
medical images is crucial for surgical and diagnostic pur-
poses. In the abundant literature on the topic a special
attention is given to locating cerebral aneurysms and arte-
riovenous malformations (AVM). It is of utmost importance
for the embolization (procedure of inserting glue into blood
vessels in order to occlude them to avoid their rupture) to
precisely determine the exact location of vessels going in
and out of the malformation, as well as their radii, bending
angles and entering (exiting) directions. The procedure is
also highly influenced by the position and the size of the
AVM. In this paper we address the problem of automatically
locating and extracting the AVM to accurately infer its size
and position. Additionally, we propose a new method for
enhancing the ordered skeletonization for a more efficient
shortest path calculation between points of interest in the
cerebral blood vessel tree.
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Recent approaches for the segmentation of cerebral blood
vessels include direction-dependent level sets and vesselness
measures [1]. The approach of [2] traces blood vessels based
on their vesselness measures. Vascular modeling toolkit
(VMTK) [3] is used for efficient delineation of cerebral
aneurysms. A number of techniques combine various imag-
ing approaches (and modalities) for visualization of cerebral
aneurysms and AVMs, such as 3-D digital rotation angiogra-
phy (3DRA) and 2-D digital subtraction angiography (DSA)
[4] or 3-D and 4-D MRA images [5]. Albeit several accurate
methods have been proposed to automatically analyze AVMs,
none of these methods address the internal AVM structure
delineation.

Center-line extraction methods are commonly divided into
two groups: the tracking and the skeletonization approach.
Vessel tracking methods track the volume or surface of a
blood vessel and extract center-lines as a byproduct. The
most common techniques are based on the wave front prop-
agation for the ordered region growing [6], the connected
components evolution, vessel models and the shortest path
algorithm. Skeletonization algorithms produce center-lines
from binary or gray-scale images by extracting the medial
axis or ridges. Binary skeletonization methods operate on
binary images (i.e. the segmented vessels). Many of these
methods apply repeatedly the morphological thinning proce-
dure on an object until one-pixel wide center-lines remain,
using different definitions of pixel connectivity and junctions.
Medial axis transform extracts center-lines by finding pixels
equidistant to at least two object boundaries. Gray-scale
skeletonization algorithms extract center-lines directly from
gray-scale images. These methods usually extract and con-
nect ridges obtained using various segmentation approaches.
The most common approaches are based on an anisotropic
vector diffusion [7] or morphological operations in combi-
nation with thresholding, distance maps or the watershed
algorithm.

We propose a novel AVM detection approach using a
multi-scale vessel density calculation. Another novelty is the
introduction of a new labeling method for the ordered skele-
tonization based on the volume of the calculated profiles.
We use our method to automatically detect and extract an
AVM, with accurate estimation of its position and size. The
main idea in our work is to use the structural (anatomical)
vessel differences and the inhomogeneities in distribution
of pixel gray values to locate and extract the AVM. The
algorithm takes a segmentation as an input to perform
AVM delineation. The algorithm determines the AVM region
automatically, without any user interaction independently of
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the segmentation algorithm used.

II. THE PROPOSED METHOD

We base the proposed method on our previous work on
skeletonization [8] and generalized pixel profiling [9].

The proposed method is based on the following obser-
vations of blood vessels in CTA images. The AVM is an
entangled blood vessel structure from which the vein drains
the blood. Due to its high density of small intertwined
vessels, and the fact that venous and arterial vessels merge
at this position, the AVM represents a region with a higher
density of vessels compared to the other parts of the cerebral
blood vessel tree. The main idea in our work is use this
characteristic to automatically locate and accurately extract
the AVM region.

A. Ordered skeletonization

Ordered skeletonization is an iterative thinning process of
a binary image, where the pixels are removed in a predefined
order. The method is composed of two important principles:
the pixel ordering and the pixel redundancy check algorithm.
In this work we will propose an alternative to the Euclidean
distance values as pixel labels for iterative thinning.

The pixel redundancy check principle is a decision rule
determining if a pixel from the segmented image should be
removed in the thinning process. The goal is to iteratively
remove pixels to obtain one pixel wide center-lines. The
redundancy check determines if a pixel can be removed from
the segmented image with preserving the pixel connectivity.
In this paper we use a condition from [8], where the 26-
neighborhood of a pixel in a 3-D image is considered
(other 3-D neighborhoods can also be used depending on
the desired pixel connectivity analysis). The pixel redun-
dancy check is performed for any pixel with more than one
neighbor in the 26-neighborhood (if only one neighboring
pixel exists, the processed pixel represents the end of a
vessel and should not be removed). Considering the 26-
neighborhood of the processed pixel, our goal is to preserve
the connectivity of all neighboring pixels if the processed
pixel is removed. Hence, the processed pixel p is considered
redundant if all its non-zero 26-neighbors belong to a single
connected component in the neighborhood. By preserving the
connectivity in the neighborhood of the processed pixel, we
ensure that the connectivity will be preserved in the whole
binary region and the segmented image.

B. Profile volume

The order in which pixels are removed plays a crucial role
in the thinning process. Various skeletonization results can be
obtained using a different order of pixel removal. The order
in which the pixels are removed is usually determined by the
Euclidean distance transform, i.e. the minimum distance of
a pixel p from the edge of a vessel in the segmented image:

rE(p) = min
q∈Z3

(d(p,q)), g(q) = 0, (1)

where d(p,q) represents the Euclidean distance between the
given pixels. Most usually squared values of the Euclidean

distance are used as labels in ordered thinning, as depicted
in Fig. 1.

The advantage of this metric is that the thinning will
propagate from the vessel borders to the central parts of the
vessels (where the highest values are situated). This yields a
skeletonization result which represents well the medial axis
of the skeletonized object.

One problem with the distance transform of a binary object
is that it often results in a small range of values (Fig. 1).
This means that a lot of pixels will be processed in the
same thinning iteration. Pixels with the same label value
(i.e. pixels which are processed in the same iteration) are
removed in a “raster-scan” order. However, this thinning
order is not optimal for the skeletonization of all vessel
structures and causes a lot of irregularities in the shape of
a skeleton with many irrelevant pixels, as shown in Fig. 2.
Another problem caused by the distance calculation is that
many pixels need to be processed in a single iteration. This
causes an increase in computation times in case multiple
iterations are done for a single label. For the purpose of a
more accurate skeletonization, our goal is to define a measure
that gives a more accurate pixel positioning.

We propose here a novel method for assigning pixel labels
for the skeletonization thinning order. The main idea is to use
the number of non-zero pixels in a wider neighborhood of the
processed pixel (i.e. a volume of the neighborhood), where
the size of the neighborhood is determined as in case of the
Euclidean distance. We call this measure the profile volume.
Let us define a set of non-zero pixels in the sphere-shaped
neighborhood Q of a pixel p with size rE :

Q(p) = {q| d(p,q) ≤ rE(p), q ∈ Z3, g(q) 6= 0}. (2)

The profile volume is the cardinality of the non-zero pixel
set:

v(p) = |Q(p)|. (3)

In this fashion we take into account the distance of the
pixel from the edge and the volume of pixel’s neighborhood.
With the profile volume we assign pixel labels from a wider
range of values (when compared to the squared Euclidean
distance) and obtain a higher accuracy for the thinning
process. Calculated profile volumes for a binary object are
depicted in Fig. 1. Comparison of skeletonization results
using squared Euclidean distance and profile volume as the
thinning order labels is illustrated in Fig. 2. Our proposed
method results in a more accurate skeleton image with fewer
irrelevant details.

C. Profile density size and AVM extraction

As mentioned earlier, an important characteristic of an
AVM is its higher density of vessel structures compared
to the rest of the blood vessel tree. However, in order to
extract the AVM we need to specify the size of the region
(volume) in which the density of vessels will be calculated.
This presents a problem since the size and volume of the
AVM can vary significantly from case to case. For this
reason we propose to use variable size of the region in which
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Fig. 1: Pixel labels for ordered skeletonization of a binary
structure (gray pixels). Left: the squared Euclidean distance
(1) for a single pixel. Middle: distance transform using the
squared Euclidean distance. Range of values is small (4
distinct values), and many pixels are processed in the same
thinning iteration, which results in less accurate skeletoniza-
tion images. Right: labels obtained using our proposed profile
volume measure. The range of values (8 distinct values) is
higher than in case of the distance transform, yielding a
higher accuracy in the ordered skeletonization.

(a) (b) (c)

Fig. 2: An ordered skeletonization of cerebral blood vessels.
(a) Close-up view of segmented vessels. (b) The ordered
skeletonization using the squared Euclidean distance has a
lot of irrelevant details. (c) The ordered skeletonization using
our proposed profile volumes yields a much more accurate
skeleton with fewer irrelevant details.

the density is calculated. Moreover, since the density (of a
region) has to be large enough to count as an AVM region,
we allow the user to manually set the threshold value for the
AVM density. For the given threshold density, we compute
for each pixel in the segmented image the maximum size
of the region in which the density of the vessels is higher
the given threshold. We use a multi-scale neighborhood in
shape of spherical layers to represent the region in which the
density is computed:

Ri(p) = {q | i2 ≤ d(p,q) < (i+1)2, q ∈ Z3, i ∈ N}. (4)

Let Ni(p) denote a set of all pixels with non-zero gray value
that belong to the set Ri(p):

Ni(p) = {q | q ∈ Ri(p), g(q) 6= 0}. (5)

We define the profile size rx as the maximum consecutive
radius value for which the ratio of the number of non-zero
value pixels |Ni(p)| and the total number of pixels in the
neighborhood |Ri(p)| does not fall under a given density
coefficient value x ∈ [0, 1]:

rx(p) = max{i | ∀j ≤ i : |Nj(p)| ≥ x|Rj(p)|}. (6)

For each pixel in the segmented image, the profile density
size is calculated for the chosen density coefficient x to
obtain the transformed image. If the density coefficient was
well chosen, the highest values in the transformed image
will belong to the region of the AVM nidus. Moreover, these
values will “converge” to the same location, which means
that they represent the largest connected component at the
given threshold value. Therefore, we propose to extract the
AVM by thresholding the transformed image and extracting
the largest connected component. This is illustrated in Fig. 3,
where the vessels are shown with the extracted AVM region
for different threshold values. For each connected component
the geometric median position of all its pixels is calculated.
The threshold is lowered (to get a larger AVM region) while
the calculated geometric median position does not differ
significantly from its previous values (in our experiments
allow 2 pixels of position deviation).

III. RESULTS

We validate our proposed algorithm for locating and
extracting the AVM on three cases of cerebral vessels con-
taining AVMs, where the onyx cast images were acquired
after the embolization procedure. The onyx cast images are
thresholded and used as the ground truth (the threshold is
easily determined because the onyx is the brightest object in
the image). We apply a hole filling algorithm on the extracted
AVM region and the corresponding onyx region to suppress
the influence of segmentation algorithm on obtained models
(in this fashion segmentation of the inner AVM structure
does not influence the comparison). In our experiments we
use the density coefficient x = 0.25 and 2 pixels deviation of
geometric median position (both of these were determined on
a trial and error basis). For evaluating the obtained results
we use the Dice coefficient [10], which is a set similarity
measure defined as twice the ratio of intersection of two sets
(set of segmented pixels and set of ground truth pixels) and
the number of elements contained in both of them:

s(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

, (7)

where X and Y represent the sets of segmented and ground
truth pixels. Besides the Dice coefficient, we calculate the
volume percent error and the distance between calculated
AVM center positions. The comparison of the obtained
results is given in Table I. In each case, our method was
able to accurately determine the position of the AVM with
slightly over-estimating the AVM volume. Fig. 4 shows two
segmented blood vessel trees with extracted AVM region and
a shortest path to it through arterial vessels. Our algorithm
is computationally efficient with about 20 seconds execution
time for a 230×256×256 data set on a 2.2 GHz processor.

IV. CONCLUSION

We introduced a method of profile volume calculation to
replace the distance calculation in order to obtain a higher
accuracy of ordered skeletonization in terms of structure
representation. Moreover, we introduced and advanced multi-
scale method of profile density size calculation, which we use
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(a) (b) (c) (d)

Fig. 3: AVM extraction principle. (a) Segmented blood vessels. (b), (c), (d) Blood vessels with delineated AVM region for
density coefficient x = 0.25 and decreasing threshold values 15000, 7500 and 2500, respectively. Note the increasing size
of the delineated AVM region (red).

TABLE I: Comparisons of the filled segmented onyx cast
with the filled extracted AVM segmentation

Validation Set 1 Set 2 Set 3
Dice 0.83 0.77 0.81

Vol. % error 10 18 13
Distance (pixels) 2.99 0.98 1.73

Fig. 4: Segmented cerebral blood vessels with extracted
AVM (green) and a shortest path to the AVM through arterial
vessels (red).

to locate and extract the AVM region. The AVM detection
and delineation method was validated on real 3-D CTA data

sets of cerebral vessels with the scan of onyx cast after
embolization procedure. In each case the AVM position was
accurately determined, with the well extracted region of the
AVM. Advantage of our algorithm is that it works indepen-
dently of the used segmentation algorithm. The designed
application is fast and requires no manual intervention to
perform delineation.
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