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Abstract— Cell wall networks are a common subject of
research in biology, which are important for plant growth
analysis, organ studies, etc. In order to automate the detection
of individual cells in such cell wall networks, we propose
a new segmentation algorithm. The proposed method is a
network tracing algorithm, exploiting the prior knowledge of
the network structure. The method is applicable on multiple
microscopy modalities such as fluorescence, but also for images
captured using non invasive microscopes such as differential
interference contrast (DIC) microscopes.

I. INTRODUCTION

Cells are the main building blocks of all organisms. Thus

in order to understand the general working, aging and/or

growing of organisms, it is of interest to study the cells

and cell organization of these organisms. This is generally

done using optical microscopy, since this allows visualising

the cells in vivo. Visual inspection and manual processing

of these microscopic images is still common in biological

research. The process of annotating data is a tedious, time

consuming and error prone task. To overcome this bottleneck

in the microscopy pipeline, several automated methods based

on computer vision have been investigated. An overview of

different cell segmentation and tracking approaches can be

found in [1], [2]. The majority of these methods start from

generic segmentation strategies such as watershed, SVM

classification or thresholding [3], [4], [5], [6].

The generic methods generally produce poor results, i.e.

with under- or over-segmentation. This is due to clutter,

bleed through, blur etc. To overcome these problems, an

extra post-processing step is used to merge and/or split the

segments in order to get more accurate segmentation results.

This post-processing step is based on the intrinsic shape

and appearance of the cells. Most of these methods perform

well for images containing a sparse group of cells, but are

hampered by dense clusters of cells such as is the case

for organs where cells (not necessarily of the same type)

are organized in a specific structure. More accurate and

robust segmentation results are achieved using markers [7]

or motion [8], however these approaches are less generic,

limiting the applicability for specific applications.
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While many approaches in literature attempt to detect

the cells directly, this work focuses on detecting the cells

indirectly, by detecting the cell walls. This duality can help

cell segmentation in situations where the cell walls form a

network structure: all cells (and cell walls) touch each other

and a cell cannot be enclosed by another cell. An example

of such a network structure is shown in Fig. 2(a) where the

cell walls of an Arabidopsis thaliana root are marked using

a fluorescent marker.

In order to detect the cell wall network we propose the

use of a tracing algorithm [9]. Several tracing algorithms

have been proposed in the past. Two big groups of tracing

techniques can be distinguished: global and local methods.

Global methods first apply a segmentation step, e.g. based

on thresholding, and then apply an analysis step where the

segmentation result is processed, e.g. using morphological

skeletonization, to a predefined structure such as a line or

a network. The proposed method fits within the group of

local methods, where a local neighbourhood is investigated

in order to find parts of the segment; these new detected parts

are then used to define new neighbourhoods to investigate.

These methods iterate until no new parts of the segment

are found. Local methods have been proposed in many

forms: semi-automatic methods [10], [11], methods where

the direction of the tracing line is predefined [12], [13], and

random orientation tracing [14].

Especially the last method will be of interest for this work,

since no prior knowledge on the direction of the cell walls

is available. While the work in [14] focuses on detecting a

single line, corresponding to the tail of a sperm cell, cell

wall segmentation requires the detection of a network. In

this paper we propose an extension of a random orientation

tracing method which can cope with splitting and merging

of lines, thus being well suited for network tracing.

This paper is arranged as follows. The next section pro-

vides a detailed description on tracing methods. First, a

line tracing algorithm for random orientation is discussed.

This is than extended to network tracing. Section III shows

the results of our technique. Section IV recapitulates and

concludes.

II. SEGMENTATION USING TRACING

A. Line tracing

In this subsection we will explain the tracing method

described in [14], which can be seen as an intelligent sub-

sampled version of [10]. This tracing method was developed

to trace the tail of a single sperm cell, thus to trace a single

line. In the next subsection we will extend this approach

to network tracing. In order to trace a single line, we start
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from a seed point, s = (x,y). We look for a new point of the

segment, i.e. the line, in a circular neighbourhood:

Nr = {n|n ∈Ω∧ round(‖n− s‖2) = r} (1)

with Ω = [0,K]× [0,L] and K× L the dimension of the

image. The pixel in this neighbourhood that has the strongest

intensity, and that does not correspond to a pixel which was a

seed in the past, nor lies in the vicinity of previous seeds, will

be chosen as the next seed, i.e. the next point in the traced

line. This process is iterated until all points in the circular

neighbourhood belong to one of the following groups:

1) the point has been a seed point

2) the point lies in the vicinity of a seed point

3) the point has an intensity less than a predefined thresh-

old

We illustrate this tracing step using Fig. 1.B-C. In Fig.

1.B an image is shown, where the seed point is marked

using a green square, and where all the pixels belonging to

the circular neighbourhood are shown in red. This circular

neighbourhood is also shown in 1.C, where all pixels not

belonging to the neighbourhood are set to black. For this

specific neighbourhood, 4 regions correspond to values above

the threshold (marked as a-d). If this is the first iteration, i.e.

if no pixel has been a seed in the past, then the white pixel in

region c will be chosen as next seed point. However if this

is not the first iteration and if that pixel was the previous

seed point, then we have to remove the complete region as

candidate seed point. Then the white pixel in region b will

have the highest intensity, thus becoming the next seed point.

B. Network tracing

The line tracing algorithm is useful for applications where

a small number of lines have to be traced, e.g. sperm

tail detection in microscopic images, but is unsuitable for

applications with a random number of lines with bifurcations,

such as is the case in cell wall networks (Fig. 1.A). In order to

extend the tracing algorithm to networks, we also start from a

seed, s, and a circular neighbourhood Nr, but the future seed

selection procedure will be handled in an iterative way. First,

the values of all pixels in the neighbourhood which already

belong to the segment, or are in the vicinity of a segment

pixel, are set to zero. Then the pixel with the highest value

is chosen as a potential seed point, sp. If the value of sp is

above a threshold, the point is added to the set of future seed

points, F . All points on the line between s and sp are added

to the segment pixels. In real applications, a line typically is

more than one pixel width, thus to avoid backtracking in the

tracing algorithm, we also add all the pixels within a small

distance, td , to the line segment. So the new set of segment

pixels is defined as:

Di+1 = Di∪{x2|∃α ∈ [0,1] :

((x1
△
= αs+(1−α)sp)∧ (‖x1−x2‖2 < td))}

with Di the set of segment pixels before adding the new

seed.

Fig. 1. An overview of the workflow of the network tracing algorithm. (A)
a microscopic image where cell walls are tagged using fluorescent markers.
(B) A close up of the red square in (A). The seed is shown in green and
the circular neighbourhood is delineated in red. (C) The intensities of the
circular neighbourhood. (D) the detected pixels at the start of processing
the seed. (E) The circular neighbourhood with the detected pixels removed.
(F) the detected pixels at the end of processing the seed.

This process is now iterated, i.e. a new potential seed is

detected (note that the value corresponding to the seed that

has just been added, is set to zero since it now belongs to

the segment), which will be added if it has a higher value

than a predefined threshold. This iterative process stops if no

points in the neighbourhood have a value above the threshold,

this seed point will be added to the end point set, E. After

finding an end point, a new seed from the future seed set,

F , is chosen as seed, thus removing it from F . For this new

seed a new circular neighbourhood will be calculated, and

new potential seed points will be searched. This iterative seed

point selection ends if there are no points remaining in the

future seed set F . Note that since points cannot be connected

to an already detected pixel, that the end points (the points

in E) are only connected to the network as a line. In order

to connect the end of the line with the rest of the network,

the line tracing algorithm described in subsection II-A can

be used.

An example of the work flow is shown in Fig. 1. A cell

wall network, visualized using fluorescent markers is shown

in Fig. 1.A. A close up of the red square is shown in Fig.

1.B, where a seed point is delineated in green and the circular

neighbourhood in red. For clarity the circular neighbourhood

is also shown in Fig. 1.C, where all other pixel values are
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set to zero. Note that in this neighbourhood, there are 4

regions which correspond to a value higher than the set

threshold (denoted with a-d). If Fig. 1.D is a visualization of

the already detected pixels, than the values corresponding to

segment in the neighbourhood are set to zero, which results

in Fig. 1.E. After two iterations all possible seed points, a

and b, are found, resulting in the segment shown in Fig. 1.F.

The found seeds, a and b will be processed in future steps.

C. Border tracing

The proposed tracing method is able to trace networks

of bright lines on a dark background. This assumption is

suitable for a fluorescent micrograph where everything lies

in the same focal plane, but clearly restricts the applicability

of the algorithm. For example if the intensity changes over

the image ( e.g. Fig. 2), it becomes difficult to set a good

threshold for the seed points. Therefore we propose to first

pre-process the images to enhance the network structure. The

filters used for these can change on the application. For flu-

orescent microscopy images a ridge filter is recommendable

[15], for wide-field microscopy standard edge filters [16] will

show good results and for differential interference contrast

(DIC) microscopy specially designed DIC edge filters will

greatly improve the results [17], [18].

III. RESULTS

In a first example we test the proposed method on the

segmentation of plant cells in A. thaliana roots. The cell

walls are marked using a fluorescent dye. The cells are

organized in a structure intrinsic to the root, resulting in a

cell wall network, as can be seen in Fig. 2.(a). To partially

remove the non-uniform intensity of the dye, we pre-process

the image using a Frangi-ridge filter [15]. The result using

different methods is shown in Fig. 2.(b-d). Figure 2.(b) is the

result of a watershed based segmentation [2]. This results in

many small false segments located at the cell borders. Fig.

2.(c) corresponds to the result of a global tracing method

[9], which also results in over segmentation. The proposed

method generally detects the cell walls correctly (Fig. 2.(d)).

Note that the Frangi-ridge pre-processing step is insuffi-

cient to remove extreme situations of variable intensities.

Therefore the cell walls with very low intensity (the cells

at the right top of the image) are not detected with any

of the methods. This might be overcome by local intensity

correction [19], at the risk of blowing up the noise at certain

locations.

We also test the proposed method using a second use case:

the analysis of DIC microscopic images. These images are

of interest for biologists, since this imaging modality is non-

invasive, in contrast to fluorescence microscopy. However,

this image modality raises many challenges for generic state

of the art segmentation techniques [18]. An example of

such an image is shown in Fig. 3(a). To overcome the

lack of contrast in specific directions, multiple images (each

with contrast in a different direction) are combined in the

Danoso edge filter [18]. The result of the proposed network

segmentation technique is shown in Fig 3.(b). It is clear

(a) RAW image (b) watershed

(c) global tracing (d) proposed processing

Fig. 2. An example of cell detection in the root tip of A. thaliana. At
the left the original microscopic image, where cell walls are tagged using
fluorescent markers. At the right the result of the proposed method is shown.

that the method works well for the detection of pavement

cells, i.e. the big puzzle shaped cells (delineated in red). The

detection of the stomata (delineated in green) is a bit less

accurate. This is because the stomata actual consists of two

cells: guard cells. Sometimes both guard cells are detected,

while for one stomata only one segment was found. However

this is less of an issue, since the stomata have a specific size

and shape, allowing to merge the guard cells in to single

stomata in a post-processing step.

This segmentation result is quantitatively compared with

the results using the work from[18], which is as far as

the authors are aware the only other method developed for

the segmentation of A. thaliana cells in DIC images. The

validation is done in comparison with manual annotated

ground truth. The segmentation quality is expressed in terms

of correct segmentation (C), over segmentation (O) and

under segmentation (U): i.e. respectively the amount of

multiple segments that where found corresponding to a single

cell and the amount of multiple cells corresponding to a

single segment. The results are shown in Table I. Note that

pavement cells are generally better detected than stomata.

The over segmentation in the proposed method is only due

to the detection of individual guard cells, which is normal

since they have the same edge properties as pavement cells.

The correct detection of guard cells will make it easier

to reconstruct the stomata, since there organization is well

known. The method discussed in [18] does not have this
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(a) RAW image

(b) proposed processing

Fig. 3. An example of cell detection in Arabidopsis leaves imaged using
DIC microscopy. At the top the original DIC microscopic image. At the
bottom the result of the proposed method is shown. Pavement cells are
delineated in red, stomata in green.

TABLE I

QUANTITATIVE RESULTS FOR THE SEGMENTATION OF DIC IMAGES

method cell type C O U
[18] pavement cells 19 3 1
proposed pavement cells 21 0 0
[18] stomata 0 5 3
proposed stomata 3 0 4

advantage, the over segmentation there is completely random

and is not due to the presence of guard cells.

IV. CONCLUSIONS

This paper proposes a novel tracing algorithm for net-

work structures. The proposed method can be used for the

segmentation of dense cell clusters, where the cell walls

are seen as a network. The method is generic in the sense

that it can be used for different microscopy modalities. The

method was tested for the segmentation of cells in fluorescent

microscopy images and differential interference contrast. The

method was validated for the detection of pavement cells and

stomata. The proposed method showed more accurate results

for both type of objects than state of the art segmentation

methods.
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