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Abstract— Obtaining high quality electroencephalogram
(EEG) data simultaneously with functional MRI (fMRI) record-
ings is increasingly relevant for the study of cognitive and
clinical brain states - as EEG-fMRI offers uniquely high
spatiotemporal resolution imaging of brain activity. However,
the utility of this technique is limited by ballistocardiogram
(BCG) artifacts induced in the EEG by cardiac pulsation and
head movement inside the magnetic field. In this paper, we
introduce a novel model-based harmonic regression technique
to remove BCG artifacts from EEG recorded in the MR
scanner. Our technique uses physically motivated parametric
models of the BCG artifact and the true EEG signal, and
incorporates maximum likelihood approaches to identify model
parameters, estimate and subtract the BCG from corrupted
EEG measurements. We show that this method effectively
removes BCG artifacts from EEG recorded in the MR scanner,
restores simulated oscillatory signatures and enables over 20-
fold improvement in SNR in bands of interest. Further, unlike
common BCG removal techniques that rely on cardiac or
motion reference signals, our approach is reference-free and
thus is useful when reference signals are corrupted or difficult
to acquire.

I. INTRODUCTION

Electroencephalogram (EEG) recorded in the MR scanner
offers a means to enhance the utility of functional MRI
(fMRI) - as it provides high temporal resolution record-
ings of brain electrical activity to complement high spatial
resolution fMRI-BOLD measurements of regional neuronal
substrates. Thus, obtaining high quality EEG recordings in
the MR scanner is important for studies of brain oscillations
in cognitive and clinical states such as sleep, attention,
and anesthesia. However, the utility of this technique is
fundamentally limited by ballistocardiogram (BCG) artifacts
corrupting EEG recorded in the MR scanner.

The BCG artifact is induced in the EEG primarily by
cardiac and blood flow related pulsatile motion of the head
and scalp electrodes in the static magnetic field [1]. The
BCG has significantly larger amplitudes (150-200 uV at 1.5
T) than underlying EEG activity (10-100 uV), can obscure
EEG activity upto 20 Hz [1] and thus lowers specificity and
sensitivity of EEG recorded in the MR scanner. Further,
variations in heart rate, blood pressure and the resulting
pulsatile head motion cause variations in the shape, timing
and intensity of the BCG artifact [2], [3] - making the
removal of this artifact very challenging.
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Several BCG removal techniques have been proposed.
Commonly, a reference signal like the electrocardiogram
(ECG) or a motion sensor is used to estimate a BCG
template waveform, and subtract this template from the
contaminated EEG [1], [2], [4]. However, these techniques
rely on high quality ECG or motion data suitable for robust
peak detection and/or adaptive filtering, but often it is hard
to acquire clean reference signals especially in magnetic
fields > 1.5 T or during long recordings. To overcome
this, reference-free BCG removal methods such as ICA
and wavelet basis decompositions have been explored [5]–
[7]. These approaches rely on separability between the true
EEG signal and the BCG artifact in amplitude, time and/or
frequency - but often many basis elements contain substantial
overlap between signal and artifact in these domains [1], [2],
[8]. This skews the separation and necessitates significant
post-algorithmic-processing and subjective case-specific cri-
teria defining which basis elements should be excluded as
“artifact” and which ones should be retained as “true EEG
signal” [7]. Thus, we need an approach that can remove
the BCG artifact without the need for a reference signal or
subjective separation criteria.

In this work, we propose a novel reference-free model-
based approach which exploits the physical and physiological
features of the BCG artifact. Comparing spectral signatures
of BCG-free vs. BCG-corrupted EEG oscillations (Fig. 1A
vs. 1B), we observe that the BCG comprises a series of
harmonic streaks. This trend is also reflected in time domain
which is dominated by pulsatile (comb-like) BCG occur-
rences that happen to occur with the same period as the
heartbeat (Fig. 1C). These observations are consistent with
the BCG generation physics [3], [8] and present a natural
harmonic basis for specifying the BCG - yet no algorithms
explicitly exploit this feature to remove the BCG. We model
this temporal structure in the BCG artifact explicitly with a
harmonic series, and also model oscillatory dynamics in the
true EEG signal with an autoregressive (AR) series. Since
the model specifies the template for the BCG, there is no
need for a reference signal. Further, our parametric model
forms are specific yet loose enough to be generalizable and
objective while taking the character of the data - hence we
do not require subjective or case-specific criteria to deal
with the time-frequency overlap between signal and artifact.
The problem of estimating and removing the BCG artifact
then becomes one of identifying the harmonic and AR
parameters to best explain the contaminated EEG data. We
develop a maximum likelihood technique to estimate model
parameters, and implement it using a Newton’s procedure.
Finally, we analyze BCG-corrupted EEG data recorded in a
3T scanner to demonstrate the efficacy of our approach.
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Fig. 1: BCG follows Harmonic Trend with Heart Rate as Fundamental Frequency: (A) High resolution multitaper spectrogram of simulated test oscillatory
EEG - delta band power has ON/OFF pattern. (B) High resolution multitaper spectrogram of sum of the simulated test oscillatory EEG in (A) and BCG-
corrupted resting state EEG recorded in 3T MR scanner. Artifacts make it difficult to discern ON/OFF delta band pattern in Panel A. (A vs. B) BCG
manifests as harmonic streaks in spectrogram. (C) Time series of BCG-corrupted EEG data (from Panel B) vs. simultaneous ECG recording - successive
high amplitude BCG combs (indicated by red arrows) have same periodicity as heart-beat. Brown *’s indicate heart cycles where ECG R-wave peaks are
hard to identify and/or relation between BCG and ECG peaks varies with time.

II. METHODS

A. Data

BCG-corrupted resting state EEG data was collected on
two human volunteers in a static 3T magnetic field (Siemens,
Erlangen, Germany). The study was approved by the Mas-
sachusetts General Hospital Human Research Committee and
subjects provided informed written consent. The acquisition
hardware comprised an MR compatible, low noise, high
dynamic range 24-bit electrophysiological recording system
with a 957 Hz sampling rate [9]. Ag/Ag-Cl EEG electrodes
were placed in adjacent bipolar pairs in 8 locations across the
head. During recording of BCG-corrupted resting state EEG
data, study subjects were asked to lay awake and motionless
(with eyes open) inside the scanner for 5 minutes. Raw EEG
recordings were detrended and put through a low pass filter
with 50 Hz cutoff.

To generate a variety of BCG-corrupted EEG oscillation
test-cases for developing and benchmarking our algorithm,
test oscillatory signals simulating various brain-states of
interest in sleep, attention and anesthesia were generated and
added to the BCG-corrupted resting state EEG recordings.
Each test signal is a sinusoidal oscillation with frequency in
the δ band (1−4 Hz), θ band (4−8 Hz), or α band (8−12 Hz).
An example test signal with a periodic 17 second ON/17
second OFF pattern is shown in Fig. 1A. This test oscillation
is added to the resting state EEG recorded in the MR
scanner to produce the corresponding BCG-corrupted EEG
oscillation (Fig. 1B). 35 such BCG-corrupted oscillations
with varying signal to artifact ratios (SNR) and oscillation
frequencies were simulated for each subject - providing a
total of 70 test cases for our model-based algorithm.

B. Model

We define a BCG-corrupted EEG oscillation as the sum
of the recorded BCG-corrupted resting state EEG and the

simulated test oscillatory signal. The BCG-corrupted EEG
oscillation can be represented with a harmonic artifact plus
colored EEG model. Denoting the BCG-corrupted EEG
oscillations from a given channel as the ‘measured’ data
series y1, y2, . . . , yT, we have:

yt = st + vt (1)

st is the BCG artifact modeled as N th order harmonic series

st = µo + µ1t+
N∑
r=1

Ar cos(ωrt) +Br sin(ωrt) (2)

where N is the number of harmonics in the spectrum (Fig.
1A); ω (rad/sec), the fundamental frequency defining the
harmonic template, is linked to the heart rate in Hz (Fig. 1C);
Ar and Br define amplitude and phase of rth harmonic.
vt is the oscillatory EEG signal modeled as a P th order

autoregressive process

vt =
P∑
k=1

akvt−k + εt (3)

where P is set to 3 to represent the spectral peak (2 poles)
and the DC component of a given test oscillation (Fig. 1A),
and the εt are independent Gaussian random variables with
zero mean and variance σ2

ε . The AR model allows us to
capture true EEG oscillatory dynamics without biasing the
algorithm towards activity in specific frequency bands. We
assume the AR(p) model is stationary at all times.

The harmonic BCG and the autoregressive EEG mod-
els reflect the empirically observed overlap in spectral
and amplitude features, but are distinct enough to de-
couple the BCG artifact from the true EEG test signal.
With this model, the problem of estimating and removing
the BCG artifact becomes one of identifying the param-
eters ω, β = [µo, µ1, A1, B1A2, B2, . . . , AN , BN ]T , α =
[a1, a2, . . . , aP ]T , and σ2

ε .
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C. Algorithm

This estimation problem is essentially harmonic regression
in the setting of correlated noise - as seen easily by rewriting
the above model in regressor matrix notation:

y = Z(ω)β + v (4)

where y = [yt1 , yt2 , . . . , ytT ]T , s = Z(ω)β, Z(ω) is:
1 cos(ωt1) sin(ωt1) · · · cos(Nωt1) sin(Nωt1)
1 cos(ωt2) sin(ωt2) · · · cos(Nωt2) sin(Nωt2)
...

...
...

. . .
...

...
1 cos(ωtT ) sin(ωtT ) · · · cos(NωtT ) sin(NωtT )


and v = [vt1 , vt2 , . . . , vtT ]T is multivariate Gaussian (0
mean, AR covariance QT×T ) with Akaike Markovian form:


vt−1

vt−2

...
vt−P

 =


a1 a2 · · · ap
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0




vt−2

vt−3

...
vt−P−1

+


εt−1

εt−2

...
εt−P


(5)

Maximum likelihood techniques work well in such para-
metric estimation problems [10]–[12]. By the maximum
likelihood criterion, the best parameter estimates are those
that, for an observed T × 1 data vector y, minimize:

−2 logL(ω,β,α, σ2
ε |y) = T log(σ2

ε ) + log(|Q|) +
ST
σ2
ε

(6)

where ST = (y − Z(ω)β)TQ−1(y − Z(ω)β). Maximizing
over σ2

ε gives the concentrated likelihood cost C to minimize:

C(ω,β,α|y) = T log

(
ST
T

)
+ log(det(Q)) (7)

D. Implementation & Data Analysis

This minimization can be implemented with a Newton’s
procedure that breaks down the complex nonlinear opti-
mization into a series of sub-problems [10]–[12] which,
when solved, converge to the global optimum [10], [13].
For a given α = α̃ and ω = ω̃, the best estimate β̂ =
arg minC(β, α̃, ω̃|y), is given by generalized least squares
on Eq. 4:

β̂(α̃, ω̃) = [ZT (ω̃)Q(−1)Z(ω̃)](−1)ZT (ω̃)Q(−1)y(8)
= [Z∗(ω̃)TZ∗(ω̃)](−1)Z∗(ω̃)Ty∗ (9)

ŜT (β̂, ω̃) = (y∗ − Z∗(ω̃)β̂)T (y∗ − Z∗(ω̃)β̂) (10)

where Eqs. 9-10 are obtained by factorizing Q(−1) as LTL
and denoting Z∗ = LZ,y∗ = Ly. Substituting ŜT (β̂, ω̃)
into Eq. 7 concentrates the likelihood over β

C̄(α̃, ω̃|y) = T log

(
ŜT (β̂, ω̃)

T

)
+ log(det(Q)) (11)

For a given α̃ and ω̃, computing the cost (Eqs. 8-11)
requires computing y∗, Z∗,det(Q) = |Q|. This can be done
efficiently with Kalman filters [10]–[12] - which we adapt
for our AR(P) + harmonics model. Denote M = [Z(ω̃) y]
and M∗ = [Z∗(ω̃) y∗]. For j = 1, . . . 2N + 2, m∗ = jth

column of M∗ can be computed by defining an observation

vector m = jth column of M , a P × 1 state vector θt and
the state space model:

θt = A(α̃)θt−1 +N(0, IP×P ) and mt = Bθt (12)

where A is the P ×P matrix in Eq. 5 and B = [1, 0, . . . , 0].
Denoting the predicted state estimate and estimate covariance
from the Kalman filter as θt|t−1 and Pt|t−1, we get:

|Q| =
T∏
t=1

BPt|t−1 and m∗t =
(mt − Bθt|t−1)√

BPt|t−1
(13)

as detailed in [10], [11]. Thus, using the Kalman filter
helps avoid explicit matrix multiplications, inverses, and
orthogonalizations. Running this filter across all j gives
y∗, Z∗, |Q|. Substituting these into Eqs. 8-11 gives the cost
C̄ to minimize.

The numerical optimization of C̄ over α and ω is imple-
mented with a genetic algorithm (Mathworks, Natick, MA).
The ω search space is physiologically bounded based on the
subject’s clinical heart rate range. Bounds for α values are
set to 0.2 − 5 times the AR coefficients obtained by fitting
the full data vector y to an AR(P) model. The elite count is
limited to 3 of 150 individuals in a population, mutation and
crossover factors were set to 80% and 20% respectively.

The numerically obtained optimal parameter estimates α̂
and ω̂ are used to re-evaluate Eqs.8-13 to get the associated

optimal β̂ and ŜT . Lastly, Eq.7 gives the optimal σ̂2
ε =

ŜT
T

.
We apply the above maximum likelihood approach seg-

ment by segment on BCG-corrupted EEG data y and obtain
model parameter estimates ω̂, β̂, α̂, σ̂2

ε . With these estimated
parameters, we compute estimates for the BCG artifact (ŝt),
EEG oscillation (v̂t), and residual noise (ε̂t) time series.
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Fig. 2: Time Domain Estimates - (A) Red plot is the BCG-corrupted EEG
oscillation y under test, and dashed blue plot is the estimated harmonic
artifact ŝ. (B) Time Series of the estimated oscillatory EEG component v̂.
(A vs. B) Removing BCG makes the δ band ON/OFF pattern clearer.
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III. RESULTS

Fig. 2 shows time domain estimates for the BCG-corrupted
EEG oscillation test case illustrated in Fig. 1. Panel 2A
overlays a segment of the BCG-corrupted EEG oscillation
(y) and the corresponding estimated BCG artifact (ŝ). It is
evident that the BCG artifact comprises a large proportion
of the power in the corrupted EEG oscillation - consistent
with our driving hypothesis that the data roughly follows a
harmonic template. Panel 2B shows the estimated oscillatory
EEG component (v̂) – this estimate appears to have period
of 3−4 Hz showing that the AR model effectively preserves
the temporal structure of the δ band EEG oscillation under
test. Further, a Ljung-Box goodness of fit test on residuals ε,
confirms whiteness (p < 0.05) – indicating that our model
and approach explain the data effectively. The spectrogram
of the estimated EEG oscillation component v̂) is shown in
Fig. 3. Comparing this cleaned spectrogram (Fig. 3) with that
of the corresponding BCG-corrupted EEG oscillation (Fig.
1B), we note that the algorithm effectively removes BCG
artifacts. Our algorithm enables a 20-fold SNR improvement
over the BCG-corrupted EEG oscillation (Fig. 1B vs. Fig. 3).
Further the cleaned spectrogram has the same δ band spectral
signatures as the test oscillation (in Fig. 1A). Specifically,
the onset of δ band power changes matches the simulated
test-case. Overall, this validates that the algorithm effectively
restores ground-truth oscillatory signatures in EEG acquired
at 3T. The SNR improvement is consistently over 10-fold
across test cases.
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Fig. 3: Harmonic Regression Algorithm Removes BCG Artifact to
Effectively Restore True EEG Oscillatory Signatures: Spectrogram after
removing BCG artifacts from data of Fig.1B. The 3− 4Hz band ON/OFF
pattern of the corresponding uncorrupted test-case (Fig. 1A) is recovered.
Onset and offset times of δ band power changes match with Fig. 1A.

IV. DISCUSSION AND CONCLUSION

We derived a novel reference-free algorithm that is highly
effective in removing BCG artifacts from EEG oscillations
recorded in MRI scanner. We have shown that the algorithm’s

estimates of underlying EEG oscillations reflect both overall
pattern trends as well as specific timing and power changes
in test oscillatory EEG signals. EEG oscillatory signatures
estimated by our algorithm consistently have over 10 − 20
fold increase in SNR over their BCG-corrupted counterparts,
even in the lowest raw data SNR cases. This is unlike
reference-based methods which sometimes even reduce SNR
due to large residuals [1], [2]. Further, unlike subtraction or
basis decomposition techniques that require long segments
of continuous contaminated recordings to estimate the BCG
artifact [1], [6], our technique works well even on short
data segments. As our approach is based on a parametric
model, we suggest that it may be well-poised to cope
with time or stimulus dependent variations in BCG features
including heart rate. One drawback of our method is that it is
computationally intensive due to repeat runs of the Kalman
filter during the numerical optimization. Future reports will
explore ways to improve computational efficiency, apply
the technique to clinical datasets, and study adaptations to
different experimental and data acquisition paradigms.
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