
  

  

Abstract—The present study proposed a novel 
multi-resolution wavelet to efficiently compress cortical current 
densities on the highly convoluted cortical surface. The basis 
function of the proposed wavelet is supported on triangular 
faces of the cortical mesh and it is thus named as the face-based 
wavelet to be distinguished from other vertex-based wavelets. 
The proposed face-based wavelet was used as a transform to 
gain the sparse representation of cortical sources and then was 
integrated into the framework of L1-norm regularizations with 
the purpose to improve the performance of sparse source 
imaging (SSI) in solving EEG/MEG inverse problems. Monte 
Carlo simulations were conducted with multiple extended 
sources (up to ten) at random locations. Experimental MEG 
data from an auditory induced language task was further 
adopted to evaluate the performance of the proposed wavelet 
based SSI technique. The present results indicated that the 
face-based wavelet can efficiently compress cortical current 
densities and has better performance than the vertex-based 
wavelet in helping inverse source reconstructions in terms of 
estimation accuracies in source localization and source extent. 
Experimental results further indicated improved detection 
performance of the face-based wavelet as compared with the 
vertex-based wavelet in the framework of SSI. It thus suggests 
the proposed wavelet based SSI can become a promising tool in 
studying brain functions and networks.     

I. INTRODUCTION 

The cerebral cortex of the human is a thin sheet of gray 
matters, where believed lays dominant generators for 
electroencephalography (EEG) and magnetoencephalography 
(MEG) signals [1]. Cortical current density (CCD) model [2] 
has been widely adopted to model the source space for 
EEG/MEG inverse problems with thousands or ten thousands 
of continuously distributed dipoles on the cortical surface. 
However, the number of EEG/MEG measurements is limited 
to a few hundreds, making EEG/MEG inverse problems 
highly underdetermined. Regularizations are commonly used 
strategies to search for a unique solution by placing priors [3].      

Regularizations using L1 norm [4-7] recently attract more 
attentions due to its sparse solutions that only small fractions 
of the brain are active, which is the case in most experimental 
EEG/MEG studies [8]. However, the direct use of L1 norm in 
original source domain in classic L1-norm regularization 
methods [5] usually resulted in over-focus reconstructions 
with highly underestimated source extents [6], while it is 
critical in many clinical applications to accurately estimate 
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source extents, e.g. identification of epileptic tissues and 
eloquent function areas for brain resections in epilepsy 
patients [9]. According to the information theory, sparse 
solutions can also be achieved in a transformed domain where 
cortical current densities can be sparser or more compressible 
[10]. Seeking suitable transforms to sparsely represent cortical 
current densities is thus of importance. A new sparse source 
imaging (SSI) technique exploring the sparseness in the 
variation domain has been developed and proved to be able to 
address the over-focus problem [6].  

It is well known that wavelet is a powerful tool for 
compressing signals [11]. Wavelet coefficients for natural 
signals are mostly zero or negligibly small, which makes 
signals sparse or compressible in the wavelet domain. The fact 
makes the wavelet transform a useful representation of cortical 
current densities in L1-norm regularization methods for 
solving EEG/MEG inverse problems. However, since the 
structure of cortical surface is highly convoluted and irregular, 
wavelets defined on regular shaped spaces cannot be used. 
Modified wavelets have been developed on arbitrary spaces in 
computer graphic and geometry compression, e.g. Spherical 
wavelets [12], irregular wavelets [13], and blending of linear 
and constant (BLaC) wavelets [14]. Basis functions of these 
wavelets can be numerically defined on triangular elements 
over irregular surfaces, which are supported either on 
triangular vertices (e.g. spherical and irregular wavelets) or 
faces (e.g. BLaC).       

In the present study, we first compressed the cortical 
surface to create a multi-resolution model as spaces to define 
wavelets. Given the multi-resolution model, a face-based 
wavelet was then developed by designing scaling and wavelet 
basis functions at different resolution levels. The 
compressibility of cortical current densities using the 
face-based wavelet was tested on randomly located multiple 
sources and compared to a vertex-based wavelet, i.e. spherical 
wavelets [12]. Utilizing its compressibility, we further 
developed a novel SSI method by integrating the proposed 
face-based wavelet with L1-norm regularization to solve 
EEG/MEG inverse problem. Monte Carlo simulations were 
conducted to evaluate the performance of the proposed 
approach with comparison to a vertex-based wavelet method. 
Experimental data from an auditory induced language task 
was also adopted to evaluate the feasibility of the wavelet SSI.    

II. METHODS 

A. Face-based Surface Wavelet 

     The proposed wavelets are defined on a multi-resolution 
model, which is obtained by hierarchically compressing the 
highly convoluted cortical mesh to create a series of nested 
spaces for multi-level analysis [15]. The compression 
procedure is done by merging multiple triangles on the fine 
level n into one triangle on the coarse level n+1. An instant of 
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the cortical surface mesh and its multiple compression levels 
are shown in Fig. 1.  

Each scaling function at the level n is defined as one on a 
triangle and zeros otherwise, while scaling and wavelet 
functions at the coarse level n+1 are then computed from the 
linear combination of the scaling functions at level n weighted 
by synthesis coefficients [14]. Similarly, scaling functions at 
level n can be decomposed into the linear combinations of 
scaling and wavelet functions at coarse level n+1 weighted by 
analyses coefficients [14]. For convenience, let An, Bn denote 
analysis matrices and Pn, Qn are synthesis matrices. Given 
analyses and synthesis matrices, functions defined on the 
original mesh can be iteratively compressed and 
reconstructed: 

  Analysis:      1n n nx A x  , 1n n ny B x                         (1)  
  Synthesis:    1 1 1 1ˆn n n n nx P x Q y                                (2) 

where ,n nx y  and 1 1,n nx y   are vectors of scaling and wavelet 
coefficients at the fine level n and the coarse level n+1, and ˆnx  
denote the vector of estimated scaling coefficients from the 
synthesis procedure.     

The wavelet transform matrix at level n is straightforward 
to be derived by iteratively performing analysis procedures: 
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where nG  is a diagonal matrix with the ith element as the area 
of ith triangle at the compression level n, known as 
Gram-Schmidt matrix [14]. The superscript 0 denotes the 
cortical surface at the finest resolution (i.e. the CCD model).  

B. Wavelet Based Sparse Source Imaging (WB-SSI) 

The wavelet based SSI algorithm can be mathematically 
stated as the following optimization problem: 
 0 0

1 2
min nW x subject to g Hx   

where nW  is the wavelet transform matrix in equation (3). The 
vector g  denotes EEG/MEG measurements and the matrix H 
is the so-called lead field, which can be calculated by solving 
the EEG/MEG forward problem [1] with given conductive 
profile model, e.g. boundary element (BE) model.  

The optimization problem in equation (4) can be solved by 
the second-order cone programming (SOCP) [16], which is 
implemented in a Matlab package named SeDuMi [17]. The 
regularization parameter β can be estimated by applying the 
discrepancy principle [18].  

C. Simulation Protocol 

The CCD model of cortical surface was obtained by 
segmenting structural MRI data from an averaged subject in 
FreeSurfer’s sample data set 
(http://surfer.nmr.mgh.harvard.edu) and multi-resolution 
model was then constructed with four compression levels as 
shown in Fig. 1.    

Seed triangles on the CCD model were randomly selected 
and gradually added with neighboring triangles to grow into 
extended patches to simulate cortical sources with certain 
extents. Dipole moments within each simulated source patch 
were computed as the multiplication of triangular area and 
dipole moment density (i.e. 100pAm/mm2). Simulations were 
conducted 200 times in order to cover most parts of the brain. 
To investigate compressibility of these cortical patch sources 
using the proposed face-based wavelet, sources synthesized 
from wavelet coefficients thresholded to reach 10% 
coefficient ratio (CR) (which is defined as the ratio between 
the number of non-zero coefficients after thresholding and the 
number of active elements in the original source domain) were 
evaluated by metrics of area under receiver operating 
characteristic (ROC) curve, i.e. AUC [20], and relative error 
(RE) [21]. Complexities of brain activities involving 
simultaneous activations were also considered in simulations 
with different numbers of cortical sources (i.e. 1, 2, 3, 5 and 
10).   

To evaluate the performance of WB-SSI, MEG 
measurements were simulated based on a 148-channel MEG 
system as generated by two simultaneous activations (i.e. two 
randomly located cortical patch sources as discussed above). 
A three-compartment BE model was built to model three 
major tissues (the scalp, skull, and brain) of different 
conductivity (0.33/Ω.m, 0.0165/Ω.m, and 0.33/Ω.m) [19] for 
the calculation of the forward problem [1]. MEG 
measurements were then contaminated by Gaussian white 
noise with signal to noise ratio (SNR) as 20dB. The 
performance of the L1-norm regularization using the 
face-based wavelet was compared to the L1-norm 
regularization using the vertex-based wavelet, i.e. Spherical 
wavelet, in recovering EEG/MEG sources at multiple 
compression levels (from one to three). Their performances 
were assessed using metrics of AUC from detection theory 
[20], spatial dispersion (SD) [21] and distance of localization 
error (DLE) [21].    

D. Experimental Protocol  

To test the performance with empirical data, the L1-norm 
regularization method with the proposed face-based wavelet 
was tested with auditory MEG data. One epilepsy patient 
performed an auditory word recognition task with the same 
protocol from [22] during the pre-surgical evaluation in 
United Hospital, St. Paul, MN. MEG recordings were 
acquired from 148-channel Magnes WH2500 
neuromagnetometer array (4-D Neuroimaging, San Diego, 
CA, USA). After applying the band-pass filter of 0.1-20Hz 
and baseline correction using pre-stimulus data, epochs were 
averaged to produce the event-related field (ERF). Sources 
were analyzed using both spherical wavelet and face-based 
wavelet in time window of 200-300ms post-stimulus, which 
was reported to be associated with early auditory and language 
process [23].   

 
Figure 1.    Illustration of original cortical surface mesh and its compressions 

at levels from one to four. 
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Figure 4.   Comparison of the face-based 
and the vertex-based wavelet methods in 
estimating coritcal sources with auditory 
MEG data at 232 ms post-stimulus. (a) 
MEG scalp map. (b), (c) Sources from 
spherical and face-based wavelet at the 

analysis level of three.  

Figure 2.   Performance of the face-based wavelet analysis at different 
compression levels with different number of sources (1, 2, 3, 5 and 10). (a) 
AUC. (b) RE. (c) An example of three sources and its synthesized results at 

levels one to four.  

III. RESULTS 

Fig. 2 shows the synthesis performance of the face-based 
wavelet method at different compression levels using different 
numbers of sources (i.e. 1, 2, 3, 5 and 10) with the same CR as 
10%. As indicated in the AUC metric (Fig. 2(a)), the two-level, 
three-level, and four-level wavelet compressions have high 
synthesis accuracies about 0.95 after thresholding across all 
conditions with different numbers of sources. The one-level 
compression has the worst AUC values while they are still 
around 0.7 even in case of 10 simultaneously active and 
randomly located sources. The overall performance indicated 

by the RE metric (Fig. 2(b)) shows that, for different numbers 
of sources, three-level and four-level compressions have the 
least RE values. Examples with three simulated cortical 
sources are provided in Fig. 2(c) for visual inspections of 
synthesized sources at different compression levels. The 
spatial extent of sources from the one-level compression is 
smaller than simulated ones, while sources from the 
three-level and four-level compressions are smoothed, which 
explains their high AUC values since the AUC metric favors 
smooth distributions.         

 Fig. 3 compares the performance of L1-norm 
regularization methods with the proposed face-based wavelet 
and the vertex-based Spherical wavelet in inverse source 

reconstructions. Reconstructed cortical current densities are 
displayed with thresholding 20% of individual maxima. 
Although the face-based wavelet indicates worse AUC values 
than the vertex-based wavelet at the two-level and three-level 
compressions, it has significantly lower DLE values indicating 
fewer localization errors and significantly lower SD values 
indicating fewer errors in estimating source extents. The 
reason for the relative high AUC values from the vertex-based 
wavelet is that the AUC metric favors smooth distributions (as 
discussed in Fig. 2). It is evidenced from the given example in 
Fig. 3(e) that the L1-norm regularization with the vertex-based 
wavelet produce much smoothed results as compared with the 

L1-norm regularization 
using the face-based 
wavelet. Via visual 
inspection, it is suggested 
that the reconstructed 
sources from the 
vertex-based wavelet are 
actually worse than those 
from the face-based 
wavelet.  

Reconstructed cortical 
current sources underlying 
MEG data from the 
language task are shown in 
Fig. 4. Magnetic scalp 
maps at 232ms 
post-stimulus indicate that 
possible current sources 
origin from both 
hemispheres but more 

dominant on the right side. Cortical current sources are 
reconstructed from magnetic fields using spherical wavelet 
(vertex-based) and face-based wavelet via L1-norm 
regularizations. Display threshold of cortical sources is set as 
10% of individual maxima.   Dominant activities are observed 
in the right superior and medial temporal regions in both two 
methods, while the left medial temporal activations are only 
observed in the face-based wavelet method. The 
temporo-parietal activation and bilaterally medial temporal 
activations are supported by literatures [23] for the auditory 
induced early language processing around 200-300ms, which 
are believed to be associated with decoding of phonological 
and sematic components of words.       

IV. DISCUSSION 

In the present study, we proposed a novel wavelet method 
defined on triangular surfaces, which is able to compress brain 
activations on the highly folded cortical surface and can be 
further implemented in L1-norm regularization to solve 
EEG/MEG inverse problems. The present study indicated the 
compressibility of cortical sources using the proposed 
face-based wavelet, and the improved accuracy in recovering 
cortical sources using the L1-norm regularization with the 
face-based wavelet as compared with the vertex-based 
wavelet in simulations. Reconstructed sources from 
experimental data further demonstrated the improved 
performance of the L1-norm regularization with the use of the 
face-based wavelet in detecting brain activations.   

Figure 3.   Performance of inverse source reconstruction with the 
face-based and vertex-based wavelets. (a) AUC. (b) SD. (c) DLE. (d) An 
example of two non-uniform sources. (e) Estimated sources in (d) using 

two methods at levels one to three.  
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The present results suggest that the proposed face-based 
wavelet is capable of providing a sparse representation of 
cortical current densities with a few numbers of coefficients 
without a significant decrease in accuracy. Although synthetic 
accuracy of the one-level wavelet analysis is relative low with 
AUC of around 0.7, the performance obviously improves 
when increasing the analysis level from one to two. However, 
the improvement from the two-level analysis to the four-level 
analysis is very limited. At the levels of three and four, 
syntheses from coefficients with 10% CR achieve the highest 
performance with AUC around 0.95 and RE around 30% (Fig. 
2(a)). Comparing performances at the same analysis level, the 
flat trends of median values of both AUC and RE across 
different numbers of sources imply that the synthetic accuracy 
is not sensitive to the number of brain activations.  

The proposed face-based wavelet analysis is then 
implemented into the L1-norm regularization framework to 
solve EEG/MEG inverse source reconstruction problems. 
Simulation results with two randomly located sources suggest 
that the inverse solver integrated with the proposed face-based 
wavelet has better performance than the inverse solver 
integrated with the vertex-based wavelet in terms of source 
localization accuracy (evaluated by SD and DLE) and source 
extent estimation accuracy (evaluated by SD) (Fig. 3 (a-c)). 
The relative higher AUC values from the vertex-based 
wavelet are due to smooth source distributions from its 
reconstructions, as visualized from examples given in Fig. 3 
(e). When increasing the analysis level of wavelets analysis 
levels, all metrics (i.e. AUC, SD and DLE) indicate improved 
performance for the face-based wavelet method, while 
increased SD values in the vertex-based method imply more 
severe blurredness in inverse solutions.   

In the analysis of experimental data from an auditory 
induced language task, the L1-norm regularization with the 
face-based wavelet further demonstrates its ability in 
reconstructing multiple simultaneous brain activations by 
successfully detecting bilateral symmetrical medial temporal 
activations, while the L1-norm regularization with 
vertex-based wavelet fails to detect the left medial temporal 
source. The L1-norm regularization with the proposed novel 
face-based wavelet will benefit researches in studying higher 
cognitive functions, e.g. language processing, which usually 
involves multiple brain regions [23].  

In the present study, a feasible sparse representation of 
cortical current activities concerned as sources for EEG/MEG 
signals is achieved using the surface wavelet. Via integrating 
the surface wavelet with the L1-norm regularization [5, 6], a 
novel wavelet based sparse source imaging is developed. It is 
demonstrated that the WB-SSI technique can achieve 
improved reconstruction accuracy of source locations and 
extents in both simulations and experiments. The WB-SSI 
technique can become a promising non-invasive tool to 
inspect complex brain activations of significant importance in 
studying brain functions and networks.    
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